
Available online at http://ijcpe.uobaghdad.edu.iq and www.iasj.net 

Iraqi Journal of Chemical and Petroleum 

 Engineering  
Vol. 24 No.3 (September 2023) 1 – 12 

EISSN: 2618-0707, PISSN: 1997-4884 

 

                                  *Corresponding Author:  Name: Ammar S. Abbas, Email: ammarabbas@coeng.uobaghdad.edu.iq  

                                  IJCPE is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 

 

Synthesis, Characterizations, and Recent Applications of the 

Silica-based Mobil Composition of Mesoporous Material: A 

Review 

 
Badoor M. Kurji a, Iqbal M. Mujtaba b, and Ammar S. Abbas c, * 

 
a Department of Chemical and Petrochemical Engineering, College of Engineering, University of Anbar, Anbar, Iraq 

b Department of Chemical Engineering, Faculty of Engineering & Informatics, University of Bradford, Bradford, UK 
c Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq 

 

Abstract 
 

   Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large 

surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the 

physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two 

groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based 

mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The 

family includes three members that are differentiated based on their pore arrangement. In this review, the major applications of the 

Mobil Mesoporous Molecular Sieves family, such as catalysts, adsorbents, and drug delivery agents, have been surveyed. 

Furthermore, the synthesis of the Mesoporous Molecular Sieves materials, the silica sources, the importance of templates, and the 

mechanisms of the synthesis are discussed herein. Members of this material family are characterized by many physicochemical 

properties that are closely related to their high silica content, crystalline structure, and pore arrangement. Commonly, the members of 

this family have large surface areas, high pore volumes, small pore sizes, and narrow and uniform particle size distributions. These 

properties enable numerous industrial applications and opportunities for scientific studies to further develop existing materials or 

manufacture new ones. 
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1- Introduction
    

   Nanomaterials contain at least one structural component 

on the nanoscale (from 1 to 100 nm) endowing them with 

many unique properties and enabling a wide range of 

applications [1]. Porous materials are categorized by the 

International Union of Pure and Applied Chemistry into 

three main types: microporous materials that have pore 

dimensions less than 2 nm, mesoporous materials that 

have pore diameters between 2 and 50 nm, and 

macroporous materials that have pore diameters higher 

than 50 nm [2]. The Mesoporous Molecular Sieves 

(M41S), Santa Barbara Amorphous (SBA) materials, 

Michigan State University materials (MSU), Folded 

Sheets Mesoporous materials (FSM), Korea Advanced 

Institute of Science and Technology materials (KIT), and 

Fudan University (FDU) materials are the most common 

forms of porous silica used in various industries [1, 3]. 

The discovery of natural zeolites, which are crystalline 

microporous aluminosilicates marks the beginning of 

advanced porous materials research [4]. Zeolites are 

widely used in petroleum refineries and chemical and 

petrochemical industries [5] because they have major 

economic benefits and are environmentally friendly [1, 6- 

14]. New zeolites with layered structures (MCM-22, 

MCM-36, MCM-49, and MCM-56) have medium pore 

sizes and various physicochemical characteristics [15]. 

Layered zeolites refer to a class of promising molecular-

sieve catalysts that have unique morphologies, 

microporous structures, and physicochemical properties 

[16]. Zeolites have pores that are smaller than 2 nm in 

diameter, which improves many industrial reactions by 

increasing the surface area, but the pores are too small to 

hold a wide range of larger molecules. Diffusion 

restrictions brought on by smaller pores also have an 

impact on how well zeolite systems work in various 

applications [17- 29].  

   Mesoporous materials have applications in adsorption, 

separation, catalysis, drug delivery, sensors, spectroscopy 

for energy storage, and nanodevices working with larger 

molecules. They are particularly advantageous because of 

their ordered structure, large surface areas, and high pore 

volumes [1]. Mesoporous materials are generally divided 

into two types: silica-based and non-silica-based 

mesoporous materials [4]. Silica-based mesoporous 

materials consist of a honeycomb-like silica structure with 
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many empty channels, and non-silica-based mesoporous 

materials mainly consist of mesoporous metal oxides or 

different types of metals [4]. 

   Over the years, different materials have been 

investigated for various uses, but silicon-based 

mesoporous materials are of particular importance and are 

promising materials for several applications, such as 

environmental remediation. This is attributed to their high 

surface areas and well-defined pore sizes. Additionally, 

these materials can interact with ions, atoms, and 

nanoparticles [30].  

   M41S was discovered in the early 1990s by Kuroda and 

co-workers and scientists at Mobil Oil Company, marking 

a milestone in materials chemistry [31]. Mobil scientists 

utilized long-chain organic surfactant molecules instead 

of using small organic molecules as a templet during the 

synthesis of highly ordered mesoporous material [31]. 

   M41S members are toxicologically safe, chemically and 

thermally stable, mechanically strong, water-soluble, and 

have high active site concentrations on their surfaces [30, 

32]. Another characteristic of such materials is the 

presence of silanol (Si-OH) groups on the surface [33]. 

Members of the M41S family attract significant interest 

because of several distinctive qualities like; uniform and 

tunable particle size and morphology, high surface area, 

high pore volume, and uniform distribution of pore size 

[34], making M41S materials suitable for numerous 

applications [35]. The active sites of the M41S family 

members can be modified by adding organic groups, 

coordination compounds, and nanoparticles. The 

functionalization broadens the applications of these 

materials in various fields [36]. The functionalization of 

these materials is mainly facilitated by the high reactivity 

and concentration of silanol groups on the surfaces of 

mesoporous material [30]. 

   M41S originated from the series of materials known as 

Mobil Composition of Matter (MCM), which includes 

various members that differ in pore arrangement and 

structure, namely MCM No.41 (MCM-41), MCM No.48 

(MCM-48) [37] and MCM No.50 (MCM-50) [38]. Their 

crystallographic definition is based on the arrangement of 

pores, which is generally complex, ranging from one-

dimensional to three-dimensional pore structures. MCM-

41has a two-dimensional pore structure (hexagonal 

structure, space group p6mm), MCM-48 has a three-

dimensional pores structure (cubic structure, space group 

Ia3d), and MCM-50 has a one-dimensional pore structure 

(lamellar structure, space group p2) [39]. Fig. 1 shows the 

pore structures for the members of the M41S family.  
 

 
         (a)                          (b)                                 (c) 

Fig. 1. Structures of M41S Members: a) MCM-41, b) 

MCM-48, and c) MCM-50 

2- Syntheses of M41S 

 

   The characteristics of the M41S members are not only 

based on the configuration of their pores but also depend 

on their microcosmic morphology and macroscopic 

structure [40]. The synthesis approaches used to form 

inorganic mesoporous materials are based on organic 

surfactant molecules and inorganic silica sources [4].  

   The M41S members (MCM-41, MCM-48, and MCM-

50) can be synthesized using different silica sources, 

surfactant types, and operating conditions, including 

hydrothermal treatment synthesis setups (Teflon 

autoclaves, reflux setups, and microwaves), temperatures, 

and reaction times.   

    The different silica sources include tetraethyl 

orthosilicate (TEOS) and other simple alkoxides that do 

not contain any siloxane bonds [41- 42], and colloidal 

silica [43- 44]. The first synthesis of MCM-41 was 

achieved using TEOS as a silica source [45]. Other silica-

source developed in the synthesis of M41S members 

include ethyl silicate [46], fumed silica [47- 48], silica gel 

and sodium silicate [49- 50], silica sol [48], bagasse fly 

ash [51], iron ore tailing [52] and rice husk ash [53- 55]. 

Notably, the silica source is one of the costliest factors. 

Currently, there is a strong effort to identify cost-efficient 

and reproducible synthesis procedures with high yields 

[56].   

   Furthermore, the synthesis relies on the use of organic 

surfactant molecules that function as templates or 

structure-directing agents (SDA), through which the 

source of inorganic silica can condense [4]. The surfactant 

chemistry and concentration play significant roles in the 

process [56].  

   Ultimately, the synthesis of M41S members can be 

controlled by the type of surfactant, the interactions 

between the silica source and template molecules, and the 

particular synthesis mechanism [57]. Different alkyl chain 

lengths can be used as surfactants such as 

octadecyltrimethylammonium bromide and 

cetyltrimethylammonium bromide [58]. The size of the 

pores, the thickness of the pore wall, and the geometry of 

the M41S members are all controlled by the surfactant; 

therefore, the choice of surfactant is critical [59].   

   The template is necessary for inorganic materials to 

nucleate and build. When the template structure is 

removed, its geometric characteristics are replicated in the 

inorganic materials [60]. Three steps are required for this 

technique to create a mesoporous solid shape: first, is the 

surfactant self-assembly, second is the organization of an 

inorganic precursor over this surfactant and the formation 

of a stable inorganic-organic hybrid, and last is the 

removal of the organic template to obtain the mesoporous 

inorganic solid [4].  

   Surfactants are amphiphilic molecules, which are 

soluble in organic solvents and water. These molecules 

have hydrophobic tails and hydrophilic heads, and they 

can arrange themselves such that the hydrophilic head 

group interacts with the water and the hydrophobic chain 

will move above the interface (the interface may be 

nonpolar liquid or air) [61]. The cohesive energy of the 
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surface is held up because of the presence of amphiphilic 

surfactant molecules, subsequently lowering the surface 

tension. The aggregates of surfactant molecules in the 

solvent have different shapes and sizes depending on the 

composition and concentration of the surfactants [4].  

 

3- Mechanism of M41S Synthesizing  

 

   The M41S synthesis depends on the self-assembled 

micelles (SAMS) resulting from the electrostatic 

interactions between the surfactant head group and the 

inorganic precursor [62]. SAMS formed between the SDA 

and the silica source can lead to liquid-crystal phases with 

hexagonal, cubic, or laminar arrangements [63]. The 

members of the M41S family can be prepared under 

hydrothermal conditions. Hydrothermal methods are 

effective for the synthesis of mesoporous molecular 

sieves generating products with higher hydrothermal 

stability, enhanced mesoscopic regularity, and improved 

pore size [64]. The synthesis of the M41S family is based 

on the combination of sol-gel, and surfactant-based 

approaches. Organic-inorganic hybrid materials are often 

prepared using sol-gel methods [65]. This process 

involves the preparation of a colloidal suspension, 

followed by gelation of the liquid suspension, and then 

posttreatment, to ultimately create an inorganic network 

or solid oxide phase [66]. 

   M41S materials are produced by the liquid crystal 

template (LCT) technique. The Mobil research group 

proposed the LCT mechanism, in which supramolecular 

assemblies of surfactant micelles direct the creation of the 

mesophase [67]. The liquid crystalline mesophases or 

micelles act as templates, rather than individual single 

molecules or ions [68]. The cooperative self-assembling 

(CSA) mechanism and true liquid crystal template 

(TLCT) mechanism are two different pathways in the 

fabrication of M41S materials [4].  

   In the CSA mechanism, the liquid solution contains 

surfactant molecules and an inorganic silica source. 

Micelles are formed in solution, surrounded by inorganic 

silica species. Then, the micelles tend to arrange 

themselves in a specific geometry, and precipitated 

particles separate from the liquid solution [69]. The 

cooperative assembly is driven by weak noncovalent 

bonds such as: hydrogen bonds, van der Waals forces, and 

electrovalent bonds. When the template is removed, the 

inorganic silica species polymerize and condense [70]. 

The CSA mechanism occurs when the concentration of 

surfactant is lower than the concentrations at which 

lyotropic liquid crystals form [71]. The pathway for the 

formation of mesoporous by using templet shows in Fig. 

2. 

 

Fig. 2. Pathway for Formation of M41S Family 
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   In the TLCT mechanism, the SAMs and liquid crystal 

phases form first because the surfactant concentration is 

relatively high, without the presence of the inorganic 

silica species. Then, the silica framework polymerizes 

around the specific geometric arrangement of the 

template. Finally, the mesostructured silica material is 

obtained after removing the template [72]. 

   The hydrothermal sol-gel process for the synthesis of 

M41S materials consists of many steps [4]. Initially, 

surfactant self-assembly occurs according to the LCT 

mechanism to form a homogeneous surfactant solution, 

which is usually aqueous. Then, a silicate precursor or 

inorganic sodium silicate is added to the surfactant 

solution which hydrolyzes under basic conditions to form 

a silicate oligomer solution. Next, these oligomers 

condense with the surfactant micelles and aggregate to 

form an inorganic-organic hybrid, which eventually 

precipitates in the form of a gel [59]. The gel is treated 

hydrothermally for further condensation, solidification, 

and reorganization of the material into an ordered 

arrangement. The ordered mesostructured silica material 

is obtained when the template is removed by calcination. 

Finally, the resultant product is cooled, filtered, washed, 

and dried [4].  

   In 1992, the Mobil research group presented the 

synthesis procedure, characterization, and formation 

mechanism of MCM-41 which has a hexagonal pore 

arrangement. The authors stressed that microscopy and 

diffraction results obtained for MCM-41 are strikingly 

similar to those obtained for surfactant/water liquid 

crystals or micellar phases [67]. The researchers used 

sodium silicate, tetramethylammonium silicate, and 

TEOS as the sources of silica. The quaternary ammonium 

surfactant compounds were cetrimonium chloride and 

cetrimonium bromide, which are cationic surfactants. In 

addition to the hexagonal MCM-41 class, the Mobil 

research group has synthesized other materials with 

different geometries by varying the molar ratio of 

surfactant to silicon. For instance, when the directing 

agent/silicon ratio is less than 1, the predominant structure 

is the hexagonal phase. As the ratio increases beyond 1, a 

cubic arrangement with space group Ia3d can be obtained, 

known as MCM-48 [45]. For ratios greater than 1.2 and 

less than 2, MCM-50 can be synthesized [30].  

 

4- Methods for Characterization of the M41S 

 

   M41S materials are often characterized by X-ray 

diffraction (XRD), X-Ray fluorescence spectrometry 

(XRF), field emission scanning electron microscopy 

(FESEM), transmission electron microscopy (TEM), 

atomic force microscopy (AFM), and nitrogen (N2) 

adsorption and desorption data [30].  

   XRD is commonly used to identify crystallographic 

structures, crystallite size, and crystallinity. Although 

XRD provides direct information concerning the pore 

architecture [73], the patterns for M41S materials only 

exhibit peaks in the low-angle range. The ordering lies in 

the pore structure, and the low-angle diffraction peaks can 

be indexed according to different lattices. [74]. XRF is 

used to determine the oxide content in materials, 

revealing that SiO2 is the main compound in members of 

the M41S family, as well as trace amounts of Al2O3, P2O5, 

and K2O3 [75- 76]. The FESEM images provide 

information on the morphology of the silica-based 

mesoporous arrays [30]. MCM-48 consists of fine 

spherical particles that are approximately similar in 

diameter, which is similar to MCM-41, whereas the 

MCM-50 particles are irregular in shape and have a 

tendency to aggregate [43, 47]. TEM is a powerful tool 

for visualizing the pore orderings with greater resolution 

[74]. For example, pores are arranged on the cubic plane 

for MCM-48 [77], whereas MCM-41 has a hexagonal 

pore shape is observed for MCM-41 [78]. AFM can be 

used to study the topography of the materials, the 

members of the M41S family have narrow and uniform 

particle size distribution [79]. The N2 adsorption and 

desorption data provide more insight into the textural 

features, such as surface area (SBET), pore size (DP), and 

pore volume (VP), which are generally calculated using 

the Brunauer–Emmett–Teller and Barrett–Joyner–

Halenda methods [80]. Table 1 shows the ranges for 

different properties of the M41S members. 

 

Table 1. Characterized Properties of M41S Members 

M41S 

member 

Pore 

symmetry 

Location of 

maximum intensity, 

degree (°) 

Silica 

Content, 

wt.% 

SBET, 

m2g-1 

VP, 

cm3g-1 

DP, 

nm 
References 

MCM-41 Hexagonal 2.2- 2.6 94.37- 95.62 
730-

1082 

0.45- 

1.35 

2.20- 

3.80 

[41, 49, 53, 81- 

83] 

MCM-48 Cubic 2- 5 > 99 
669-

1586 

0.33-

2.58 

2.05-

4.02 

[34, 37, 47, 54, 

84- 85] 

MCM-50 Lamellar 2.1- 2.5 – – – – [47, 86] 

5- Applications of M41S Materials 

 

   The M41S family of mesoporous materials are 

promising candidates for catalysis because they are 

relatively non-toxic, non-corrosive, non-air sensitive, 

highly reusable, completely pollution-free, and 

environmentally benign supports for catalytic 

transformation in the liquid phase [87]. MCM-41, MCM-

48, and MCM-50 have high surface areas, narrow pore 

size distributions, and efficient adsorption capacity, which 

facilitate mass diffusion and transport for higher catalytic 

yields. Furthermore, the textural and chemical properties 

of their surfaces are adjustable, allowing for the 

optimization of the product selectivity for target 



B. M. Kurji et al. / Iraqi Journal of Chemical and Petroleum Engineering 24, 3 (2023) 1 - 12 

 

 

5 
 

molecules. Moreover, they exhibit useful optical inertia, 

thermal and mechanical stability, and stabilization of 

metal complexes, which is necessary to prevent unwanted 

reactions that can reduce their catalytic activities [88]. 

Table 2 lists several examples of M41S members used as 

catalysts for different reactions. 

 

Table 2. Examples of M41S Members used as Catalysts and Support Catalysts for Different Reactions 

Catalyst Promoter Chemical reaction Reference 

MCM-41 – Cracking of polyethylene [89] 

MCM-41 – Esterification of glycerol with acetic acid [81] 

MCM-48 – Degradation of linear low-density polyethylene [90] 

MCM-48 – Esterification of acetic acid and ethanol [91] 

MCM-41 Co-Mo Hydrodesulfurization of light cycle oil [92] 

MCM-41 Dialkylsilane groups Esterification of glycerol with fatty acids [93] 

MCM-41 Nickel Hydrocracking of coker wax oil [41] 

MCM-41 CuCl2 Oxy-carbonylation of methanol [94] 

MCM-48 CuCl2 Oxy-carbonylation of methanol [94] 

MCM-48 Sulfonic acid Alkylation of toluene with benzyl alcohol [95] 

MCM-48 Alumino-silicate Sulfur Removal from tyre-derived oil [76] 

MCM-48 Fe2O3  Esterification of acetic acid and ethanol [91] 

MCM-48 Pd Hydrogenation of olefin [96] 

MCM-48 Tungstophosphoric acid Esterification of palmitic acid and cetyl alcohol [97] 

 

   Silica-based mesoporous materials can also be used as a 

strong support matrix for metals or metal oxides in 

catalytic applications [98]. Catalyst supports help to 

increase the efficiency of the supported metals or metal 

oxides by acting as the catalytically active center [99]. 

M41S members offer particularly high thermal stability in 

catalyst synthesis. Their catalytic function is achieved by 

the incorporation of active sites in the silica walls or the 

deposition of active species on the inner surface of the 

material. The advantages of using ordered mesoporous 

solids as catalyst supports are their relatively large pores 

and high surface areas, facilitating mass transfer and 

providing a high concentration of active sites [81]. 

Finally, the supported catalysts show high activity, a low 

degree of metal leaching, and ease in recycling when 

assembled on silica-based mesoporous materials [99].  

   Adsorption is also recognized as one of the useful 

applications of M41S materials because of their 

effectiveness and flexibility [100]. Furthermore, the 

M41S family has received considerable attention because 

of their high surface area, slightly higher pore diameters 

compared with the diameters of the adsorbate, and 

effective performance as adsorbents [73]. Moreover, their 

adsorption capacity can be enhanced by modifying their 

surface chemistry using various functional groups [101].  

MCM-41 composites with imprinted nickel ions through 

co-condensation were used as mesoporous adsorbents to 

remove Ni+2 cations from wastewater, with high recovery. 

The adsorption rate and capacity were up 95% [100]. In 

addition, MCM-41 and MCM-48 expanded with N-N 

dimethyldodecylamine can effectively remove the cations 

Cd+2, Co+2, Cu+2, and Pb+2 in an aqueous solution [102]. 

Regarding dye molecules, the chemical stability and low 

degradability of their aromatic structures are considered 

the major challenges for removing them from the 

environment [73]. However, MCM-48 has been used to 

remove Congo red anionic dye, and the optimum 

adsorption time was 25 minutes [103].  

   As additives, the M41S materials can improve the 

tribological, chemical, and thermomechanical properties 

of polymer materials. The high porosity of the 

mesoporous silica allows it to host a high amount of 

polymer chains [104]. Vinyl-functionalized MCM-48 has 

been polymerized with polystyrene, and the resulting 

polymer exhibited enhanced mechanical properties 

compared with the original polystyrene [105]. Ethylene 

polymerization with the addition of MCM-4, can improve 

the tensile strength and elongation at break by 28.3% 

compared with pure polyethylene [106].  

   Drug delivery systems are the most recent adaptation of 

the M41S family. An efficient delivery system should 

transport the desired drug molecules to the targeted cells 

or tissues and release the drug in a controlled manner 

[107]. M41S are applied as delivery agents because they 

have tunable particle size and morphology, uniform and 

tunable pore size, high surface area and pore volume, 

facile surface functionalization, stable physicochemical 

properties, and thermal stability [108]. Moreover, some 

mesoporous silica materials are characterized by 

biodegradability and biocompatibility [109]. Cytometry 

assays revealed that synthesized silica has no cytotoxicity 

against human peripheral blood mononuclear cells. 

Accordingly, the drug-loaded nanostructures can be 

applied via different routes, such as wound dressing 

[110]. Specifically, MCM-48 has been applied as a drug 

delivery agent, and the release kinetics of ibuprofen have 

been examined [111].  

 

6- Conclusion 
 

   M41S are remarkable because of their uniform and 

tunable particle size and morphology, high surface area, 

high pore volume, and uniform pore size distribution. 

Additionally, these substances possess characteristics 

such as being non-toxic, chemically and thermally 

resistant, mechanically strong, soluble in water and 

having a high concentration of active sites on their 
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surfaces. M41S differ in pore arrangement and structure 

which have been named MCM-41, MCM48, and MCM-

50. These different members of the M41S family can be 

produced using different silica sources, surfactants, and 

synthesis conditions. 

   Essentially, the synthesis and control of mesoporous 

materials depend on the surfactant type, synthesis method, 

and interaction of the silica source with the template 

molecules. Organic surfactant molecules can act as 

templates or SDA, around which the inorganic silica 

precursor can condense. Furthermore, the self-assembly 

between the SDA and the silica precursors can lead to a 

liquid-crystal phase with a hexagonal, cubic, or laminar 

arrangement. M41S materials are produced by the LCT 

technique, which includes two different pathways such as 

the CSA and TLCT mechanisms.  

   Multiple methods have been used to characterize M41S 

materials, such as XRD, XRF, FESEM, TEM, AFM, and 

N2 adsorption-desorption data. The M41S members have 

diffraction peaks in the low-angle range, their main 

chemical compound is SiO2 (> 94 wt.%), and they mainly 

consist of spherical particles. The pore arrangement is 

hexagonal for MCM-41, cubic for MCM-48, and lamellar 

for MCM-50. Generally, these materials have a large 

surface area (reaching 1586 m2g-1), high pore volume 

(1.35-2.58 m3g-1), and small pore size (2.20-4.05 nm), 

with a narrow and uniform particle size distribution. 

MCM-41 and MCM-48 can be used as catalysts, support 

catalysts, water treatment agents, and drug delivery 

agents. In contrast, MCM-50 has attracted less attention 

and has not been used in applications. The surface activity 

of mesoporous materials can be enhanced by the 

functionalization of these materials with organic or 

inorganic functional groups, which are used in different 

applications such as catalysts or adsorption processes.   
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لمواد لئلة التوليف والتوصيف والتطبيقات الحديثة لتكوين موبيل القائم على السيليكا لعا

 المسامية: مراجعة
 

 ، *3عمار صالح عباس ، و 2 إقبال محمد مجتبى، 1بدور محسن كرجي 
 

 قسم الهندسة الكيميائية والبتروكيماوية، كلية الهندسة، جامعة الانبار، الانبار، العراق  1
  المعلوماتية، جامعة برادفورد، برادفورد، المملكة المتحدة قسم الهندسة الكيميائية، كلية الهندسة و 2

 ية، كلية الهندسة، جامعة بغداد، بغداد، العراقاو الهندسة الكيميقسم   3

 
 

  الخلاصة
 

بنية ب متازت و التي المواد المسامية القائمة على السيليكا هي فئة من المواد المسامية ذات الخصائص الفريدة   
المختلفة من المواد . تغطي هذه المراجعة الأنواع انكبير  يحجم مسامو  يةمساحة سطحو مسامية مرتبة، 

. الخصائص الفيزيائية التي تجعلها ذات قيمة في الصناعةتستعرض  الميسوبوروس( و المسامية )الزيوليت و
لقائمة اية غير المواد المسام يمكن تقسيم المواد المسامية إلى مجموعتين: المواد المسامية القائمة على السيليكا و

، لسيليكاالجزيئية ميسوبوروس هي أشهر عائلة من المواد التي تحتوي على اعلى السيليكا. تعتبر عائلة المناخل 
م. في ترتيب المسام لديهب متميزينالانتباه بسبب خصائصها المفيدة. تضم العائلة ثلاثة أعضاء  تالتي جذب و

 زات والتطبيقات الرئيسية عائلة المناخل الجزيئية المسامية موبيل ، مثل المحف استعراضهذه المراجعة، تم 
الأدوية. علاوة على ذلك، تمت مناقشة عمليات توليف مواد المناخل الجزيئية  عوامل إيصالالممتزات و 

العديد بائلة آليات التوليف. يتميز أعضاء هذه الع أهمية القوالب المستخدمة و مصادر السيليكا و ميسوبوروس و
 ولبلورية، ا تهانيب الكيميائية التي ترتبط ارتباطًا وثيقًا بمحتواها العالي من السيليكا، و من الخصائص الفيزيائية و

 و عالية، يةأحجام مسام . بشكل عام، يمتلك أفراد هذه العائلة مساحات سطحية كبيرة، وفيها ترتيب المسام
 لافراد هذه العائلةموحدة لحجم الجسيمات. تتيح كل هذه الخصائص  توزيعات ضيقة و مسام صغيرة، و قياس

فرص ال و التطبيقاتلمزيد من  عيهاتفتح الباب على مصر  و العديد من التطبيقات الصناعيةالاستخدام في 
  لمواصلة تطوير المواد الموجودة أو تصنيع مواد جديدة.أكثر علمية  لدراسات

 
 .الأدوية عوامل إيصالمخفضات التوتر السطحي، المحفز، الممتزات،  الجزيئية،، المناخل M41S: الكلمات الدالة

 

 

 

 


