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Abstract

The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward
organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of
phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm? to detect the best conditions
for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray
diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM)
and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by
energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm?), pH
(3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/lI) on the anodic electro-oxidation of phenol was investigated. The results
revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the
current density of 25 mA/cm? gave the best cathodic deposition performance. The removal efficiency of phenol and other by-
products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH
increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm?,
pH= 3, NaCl conc. of 2 g/L within 3 h.
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1- Introduction
. . . Adsorption, biological treatment, chemical oxidation,
Globally, there is an increasing need for petroleum gjgillation, precipitation, ion exchange, solvent
products, which increases the risks to the environment.  eyraction, reverse osmosis, membrane processes, electro-
One of these problems is caused by the large amounts of  gyjqation, and electrocoagulation are some technologies
wastewater produced during the process of refining crude  nat have been utilized to remove phenol from aqueous
oil, which includes a variety of contaminants in the range  go|utions [11 - 15]. Because electrons are a versatile
of 0.6 to 1.4 tons of wastewater produced for every ton of  effeciive, clean reagent, easily automatable, and possess a
oil produced [1 - 3]. Phenc_)l and its d_erlvatlves are among  pigher pollutant degrading efficiency than standard
the most frequent organic contaminants found in the  techniques, electrochemical technologies provide an

industrial wastewater from the oil refining industry. They  ajternative solution to many environmental issues in the
are also found in the waste products of other industries process industry [16 - 19].

including  petrochemicals, ~ pharmaceuticals,  coking Electrochemical technologies provide an alternative
processes, resin manufacture, plastics, paint, pulp, paper,  sojution to many environmental issues in the process
textiles, wood products pesticides, and herbicides [4 - 8]. jnqustry because electrons are versatile, effective, clean

Due to their high toxicity, limited biodegradability, and reagents, easily automatable, and possess a higher

severe effects on the environment, people, and animals;  no[jytant degrading efficiency than standard techniques
these chemicals are particularly dangerous even in small [16 - 23].

amounts. Phenol poses serious health risks to people since  ~ Both direct and indirect anodic oxidation can be utilized
it is a possible human carcinogen. According to the j; the electrochemical process to degrade organic
Protection Agency, phenol is one of the most dangerous  ¢ontaminants. In direct anodic oxidation, pollutants are

toxins and should be rapidly eliminated from all waste  fjrst hound onto the anode surface before being removed
streams. The wastewater discharge standards for phenol v the anodic electron transmission reaction. At the

are set at 0.005 mg/L for groundwater and 0.05 mg/L for  anode  chioride ions combine with electrons to form
the sewage treatment plant [9, 10]. active chlorine species such as hypochlorous acid (HOCI),
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chlorine, and hypochlorite ions, which attack organic
molecules and break them down into harmless
byproducts. Hypochlorous acid is a very strong oxidant
that is produced in the bulk solution at an acidic medium,
and it is more reactive than the hypochlorite ion, after
that, the pollutants in the whole solution are flushed out.
[12, 24- 26].

Numerous variables, including electrode material,
current density, and the existence of species in the
solution that can act as mediators, flow dynamic regime,
and pH influence the effectiveness of an electrochemical
process [28- 30].

When choosing electrodes for electro-oxidation of
organic and inorganic pollutants, several factors need to
be considered. These include the stability, selectivity,
expenses, and ecological impact of the electrode material,
as well as the content and characteristics of the
wastewater that will be treated [31].

Electrodeposition is an effective technique in preparing
composite substrates for electrochemical applications
since it directly deposits oxide layers on a substrate
surface and has been used successfully to produce
electrolytic metal oxides. Additionally, the process only
requires one step; it is straightforward and inexpensive in
terms of equipment, allows for perfect control of the
thickness of the deposit, is template-free, clean, and
economical, appropriate for large-scale applications, and
is easily controlled [32, 33].

The goal of this work is the electrodeposition of the
composite metal electrodes galvanostatically onto
graphite from cobalt nitrate and manganese chloride
solution with different current densities (25, 30, and 35
mA/cm?). Binary composite electrodes had been studied
for supercapacitors and very few previous studies
investigated the removal of phenol by binary composite
electrodes. Therefore, in the present study, utilizing the
composite electrode during the electro-oxidation of
phenol has been examined with different conditions
(current density, pH, and NaCl) to detect the beat
conditions for indirect oxidation of phenol.

2- Experimental Work
2.1 Electrodeposition Process

Composite Electrodes (manganese oxide and cobalt
oxide) were prepared by electrodeposition process. The
cell was made up of two graphite electrodes with
dimensions (12 cm*5 cm*1 cm) fixed in a glass
electrolytic bath. To improve particle adherence to
graphite, the graphite electrodes were heated to 350°C for
30 minutes in a furnace [34]. After that, they were cleaned
with distilled water. The graphite electrodes were
prepared with distilled water after being cleaned with
acetone to eliminate surface contaminants and the oxide
layer before every experiment.

The electrolytic solution for deposition was prepared
from 0.2 M of MnCl;-4H,0 and 0.2M of Co(NO3),-6H,0
with a ratio (1:1) dissolved in 600 ml of distilled water.
The specification of materials is mentioned in our

previous study [35]. Graphite electrodes were placed
vertically (with an active area of 25 cm?) in the electrolyte
bath with a distance of 3 cm between electrodes, and they
connected to (DC) power supply (MS-605D, China) as
shown in Fig. 1. The deposited film of manganese and
cobalt oxide onto the anode and the cathode of graphite
electrodes were investigated by applying various direct
current densities (25, 30, and 35 mA/cm?) for 2 h. After
deposition, the graphite electrodes were washed with
distilled water. The green and brownish/gold colors of
deposited graphite indicated the existence of manganese
and cobalt oxides, respectively [36].

Fig. 1. The Electrochemical Cell Schematic (1. DC power
supply, 2. Magnetic stirrer, 3. Graphite anode 4. Graphite
cathode 5. beaker)

2.2 Phenol Electro-Oxidation Process

Each prepared metal oxide composite electrode (anode
or cathode) was utilized as an anode in the system of
electro-oxidation of phenol, while graphite was utilized as
the cathode. The performance of the synthesized
electrodes was detected by adopting them as anodes to
remove phenol from an aqueous solution with 150 mg/I of
phenol (equivalent to 320 mg/l of COD) using 0.1 M of
H2SO, and a specified quantity of NaCl as the supporting
electrolyte. For the phenol removal studies, a volume of
600 ml was used, and a temperature of about 25 +1°C was
maintained  throughout  the  experiments.  The
electrochemical removal experiments were took place
under the specified operating parameters: current densities
of 40, 60, and 80 mA/cm?; NaCl conc. of 1, 1.5, and 2
g/L, an initial phenol concentration of 150 mg/l; an
electrolysis time up to 3 h, and a pH of 3, 4, and 5. Each
experiment was duplicated, and the average value of COD
was taken, and the COD would be utilized to detect the
accurate value of removal for phenol and any other
organic by-products that may be produced during the
indirect oxidation process [29]. Eq. 1 shows the COD
removal efficiency.

COD Removal% = CODZ;DZODf x 100 Q)

Where: COD, and CODy are both the initial and final
values of COD, respectively.
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The samples were taken at the beginning and the end of
the electrolysis process and subjected to the established
colorimetric method by (Lovibond water testing,
Photometer- System MD200) for COD characterization
[29].

3- Results and Discussion
3.1. XRD analysis

To detect the crystal structure of the prepared electrodes
which were prepared with different current densities (25,
30, and 35 mA/cm?). Fig. 2 to Fig. 4 show the XRD
spectra of the deposited anode and cathode electrodes.
Al, B1, and C1 referenced the anode electrode, while A2,
B2, and C2 referenced the appropriate cathode electrode,
where A, B, and C represented 25, 30, and 35 mA/cm?,
respectively.

The XRD spectra show diffraction peaks in all prepared
electrodes at 26=31.83° (220), 37.4° (311), and 65.33°
(440) which are associated with the cubic phase of C030s
and the observed ‘d’ values match with standard ‘d’
values are taken from JCPDS card no-042-1467.
However, XRD spectra also show the diffraction peaks at
20=28.09°, 36.5°, 41.8°, and 60.06° which are associated
with (310), (211), (301), and (521) planes. These peaks
are associated with orthorhombic MnO, and hexagonal
MnO, that match with JCPDS card No0.044-1316 and
N0.030-0820, respectively.

The XRD pattern also indicates the presence of a cubic
spinel structure of MnCo204. These peaks corresponding
to 18.79°, 31.27°, 34.62°, 37.10°, 38.72°, 45.04°, 55.57°,
59.46°, 65.13°, 77.61°, and 78.26° can be indexed to
crystal planes of (111), (220), (311), (222), (400), (422),
(511), (531), (533), and (622). The values are in
agreement with JCPDS database number 023-1237.

Many peaks in the XRD patterns seemed weak and
broad, which indicates the samples' low crystallinity. Low
lattice energy, which is related to poor crystallinity, is
useful for electrode materials because it makes the
deintercalation process simpler [36]. The XRD patterns of
the prepared electrodes show noticeable variation, and all
of the strong diffraction peaks are related to the graphite
substrates. The deposited oxide merely added a wider
peak with a very low intensity near 37° in each pattern; it
should be emphasized. A previous study by [38] provided
evidence that the binary Mn-Co oxides and plain Mn
oxide were both nanocrystalline materials. In other words,
the crystal structure of the pure Mn oxide did not appear
to be impacted by the incorporation of Co oxide.

3.2. SEM analysis

The morphology of prepared deposited electrodes was
observed by SEM. The anode materials' morphology
differed from the cathode materials' as shown in Fig. 5 to
Fig. 7 which illustrate SEM images at different
magnifications with different current densities (25, 30,
and 35 mA/cm?). Generally, the anode materials were
regarded as blocks with powders. Due to the low

conductivity of metal oxides, the oxidation reaction
occurred preferentially at the thinner parts of the film,
filling the pocket to make the film flat. This structure
suggests that oxidation and deposition of metal ions could
occur simultaneously on the electrode. The surface area of
the anode materials is expected to be low [39].
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Fig. 2. XRD Analysis of Co-Mn Oxide (0.2- 0.2 M) for
Anode (Al), and Cathode (A2) at Current Density = 25
mA/cm?

Counts

Bl 2 =
S =
“m% ¢ 3
1600 - o o ¥ 4
S = %% 9
¢ R0 S S
= >SS ¥ 3
- £ 93 ¢ o g
g £ 98 ¢ g3 2§
3 <O oA 8 Q
< ¢ % §¢ $g9 § N
400 s £ o =8 2 o s = "
2 s § *x =% F sg¢ ¢
s 2 = R &
= -
100 i
0 1 1 I 1

1 1
10 20 30 40 50 60 70 80
Position [*2Theta] (Copper (Cu))

Fig. 3. XRD Analysis of Co-Mn Oxide (0.2- 0.2M) for
Anode (B1), and Cathode (B2) at Current Density =
30mA/cm?
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Fig. 4. XRD Analysis of Co-Mn Oxide (0.2- 0.2M) for

Anode (C1), and Cathode (C2) Current Density = 35
mA/cm?
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The cathode substrates at 25 mA/cm? were well covered
with nanofibers metal oxides. Porous spaces were
observed between the nanofibers, enhancing the redox
process as confirmed in the previous study by[40]. It is
well known that the energy available for creating new
grain nuclei is affected by the cathodic overpotential.
When the current density is modest (about 25 mA/cm?), a
coarse-grained structure forms because the grain growth
rate exceeds the nuclei formation rate. When the current
density is raised to 30 mA/cm2, the overpotential
increases, and the granules smooth out. As can be seen in

e 5 o Ot

Fig. 6B1 and Fig. 6B2, the grains have reduced and
transformed into spherical shapes. The embedded
particles are also more concentrated and uniformly
dispersed. SEM photos reveal a decent degree of surface
covering, however as the current density is increased to
35 mA/cm?, peeling is detected on the surface of the
composite coating, which is consistent with prior research
[29, 41, 42]. As the current density increases from 25
mA/cm? up to 35 mA/cm?, the amount of Co30, particles
slightly decreases, and the amount of MnO- particles in
the coating increases gradually [43, 44].

Fig. 5. SEM of Co-Mn Oxides (0.2- 0.2 M) of Anode (A1), and Cathode (A2) at Current Density 25mA/cm? and at
Different Magnification (5kx, 100kx, and 200 kx, respectively)

Fig. 6. SEM of Co-Mn Oxides (0.2- 0.2 M) of Anode (B1), and Cathode (B2) at Current Density 30mA/cm? and at
Different Magnification (5kx, 100kx, and 200 kx, respectively)
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3.3. EDX analysis

The elemental compositions of the prepared cathodes
and the anodes of Mn-Co composites at various current

densities were tested using EDX. The EDX spectra
showed the presence of Co, Mn, and O. It is shown that
increasing current density leads to a slight difference in
the amount of Co and Mn as illustrated in Table 1.

Table 1. EDX Spectra of Anode and Cathode of Mn-Co Oxides at Various Current Densities (25, 30, and 35 mA/cm?)

Anode Cathode
25 mA/cm?
Element Wt.% At. % W1t.% At. %
] 53.38 79.74 51.84 79.97
Mn 19.24 8.53 18.26 8.06
Co 27.39 11.73 29.90 12.89
Sum 100.00 100.00 100.00 100.00
30 mA/cm?
Element Wt.% At. % Wt.% At. %
0] 52.38 79.74 52.84 80.05
Mn 19.24 8.53 18.27 8.06
Co 28.39 11.73 28.90 11.89
Sum 100.00 100.00 100.00 100.00
35 mA/cm?
Element Wt.% At. % Wt.% At. %
0 53.09 80.19 50.72 78.62
Mn 19.17 8.43 20.75 9.37
Co 27.74 11.38 28.53 12.01
Sum 100.00 100.00 100.00 100.00

3.4. AFM analysis

Fig. 8 (Al to Cl) shows the AFM images of anodes’
surfaces which are deposited under the various current
densities, it is clear that the roughness (root mean square,
RMS) of the Co-Mn oxide deposit decreased with
increasing current density hence small deposits and rapid
nucleation occur at a high applied current during the
electrodeposition process, other authors had verified this
finding [45].

AFM pictures of the surfaces of cathodes prepared at
various current densities are shown in Fig. 8 (A2 to C2).
The number of deposition sites reduces and the surface
becomes rougher as the current density rises from 25
mA/cm? to 35 mA/cm?, and those results agree with
previous studies [29, 46, 47]. According to the higher
measured RMS (as shown in Table 2) of the surface
roughness, the metal oxide deposition on the cathode is
rougher than the metal oxide deposition on the anode due
to the hydrogen evolution at the cathode that increased as
current density increases [47].
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Fig. 8. AFM Images for Co-Mn Oxide (0.2-0.2 M) Anode (A1, B1, and C1), and Cathode (A2, B2, and C2) at Various
Current Densities (25, 30, and 35 mA/cm?)

Table 2. Root Mean Square (nm) of Anode and
Cathode of Mn-Co Oxides at Different Current
Densities

Root mean square, nm

Current density mA/cm?

Anode Cathode
25 28.33 37.78
30 14.4 46.8
35 10.68 48.33

3.5. Phenol Removal

The performance of the prepared composite anode and
cathode was studied by anodic electro-oxidation of
phenol with an initial conc. of 150 mg/l that is
equivalent to COD of 320 mg/l in the presence of a
different concentration of NaCl and 0.1 M H,SO, to
adjust the pH of the electrolyte. To determine how
effective, the composite electrodes were at removing
phenol, initial experiments were carried out at 25
mA/cm?, 1 g/l NaCl, and pH 3. The results are reported
in Table 3.

Table 3. Phenol Removal Efficiency for Mn-Co
Composite Oxide Prepared by Different Conditions

COD removal % at current

Conditions of density =25 mA/cm?, pH =3,
prepared electrode _and NaCl conc. =1 g/I
Anode Cathode

Currentzdensny of 25 49 530 69.521

mA/cm

Currentzdensny of 30 37.391 55.891

mA/cm

Currentzdensny of 35 31.872 51.672

mA/cm

Therefore, the cathode prepared at 25 mA/cm? was the
most effective electrode for COD elimination according

to these results and the results of the characterization of
the anode and cathode prepared with different current
densities.

The optimal cathode electrode’s performance is tested

in a range of NaCl (1, 1.5, and 2 g/l), pH (3, 4, and 5),
and current density (40, 60, and 80 mA/cm?) to detect
the effect of these conditions on the COD removal
efficiency.
The removal efficiency of COD under different current
densities (40, 60, and 80 mA/cm?) was examined at
NaCl = 1 g/l, and pH =3. As shown in Fig. 9, the
removal efficiency increased as the current density
increased due to the increase in the generation of HOCI.
As the current density increases from 40 to 80 mA/cm?,
the removal percentage after 3 h of electrolysis
increased from 79.224 to 96.656 %, respectively which
is in agreement with previous studies [16, 48].

100
95
90
85
80

75
20 40 60 80 100

Current Density (mA/cm”2)

COD Removal%

Fig. 9. Effect of Current Density on Organic Removal
at NaCl = 1¢g/l, pH = 3, and time = 3h

Fig. 10 shows the removal efficiency of phenol under
different values of pH, and the results showed that it
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decreased from 96.656 to 88.84% as the pH value
increased from 2 to 5, respectively, and this result
agrees with previous work [16,48].
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Fig. 10. Effect of pH on Organic Removal at Current
Density 80 mA/cm?, NaCl = 1g/I, and time = 3h

It must be established that the removal of phenol and
any other by-products is attained by oxidation with
reactive chlorine species such as chlorine (Cl),
hypochlorous acid (HOCI), or hypochlorite ion (OCI").
HOCI is the dominant oxidant which is more effective
than other oxidants, so higher removal efficiencies are
predicted at a more acidic medium. This can be
expressed in Eq. 2 [49, 51, 52].

At anode: Clyyssy + H,0 » H* + CI™ + HOCI 2

Fig. 11 illustrates that due to the participation of
active chlorine in the oxidation process, the efficiency
with which COD is removed rises as the concentration
of NaCl in the solution rises. The removal efficiency of
COD increased slightly from 96.656 to 98.769 % when
the concentration of NaCl in electrolyte increased from
1 to 2 g/l respectively, at 80 mA/cm?, and pH= 3. The
increase the concentration of NaCl leads to an increase
in HOCI generation, which means higher removal
efficiency and that agreed with previous studies [53, 2].
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Fig. 11. Effect of NaCl on Organic Removal at Current
Density 80 mA/cm?, pH =3, and time = 3h

The current results showed that Mn-Co composite
electrode is a very active electrode in eliminating
phenol and any other by-products by reducing the
required time for electrolysis to 3 h in comparison with
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previous studies that utilized other electrodes [54, 55,
56].
4-  Conclusion

The Mn-Co composite electrode was prepared under
different current densities by electrodeposition process.
Based on the results of characterization, the composite
electrodes of the metal oxides were prepared
successfully anodically and cathodically. The optimum
current density for electrodeposition of Mn-Co oxide
was 25 mA/cm? according to the result of XRD, SEM,
and AFM; hence, it gave good surface coverage with
small roughness and with the highest value of COD
removal.
Increasing the current density and the concentration of
NaCl improved the effectiveness of removing phenol
and its byproducts, whereas increasing the pH range in
the electrolyte has the opposite effect. A high COD
removal efficiency of 98.769 % was acquired in 3 h,
which is considered an excellent result in comparison
with previous studies that accomplished this removal
with a longer electrolysis time.

Nomenclature

Nomenclature Meaning Unit

COD Chemical Oxygen Demand mg/l

CODs Final COD concentration mg/l

CODy Initial COD concentration mg/l

Symbol Definition

XRD X-ray diffraction

EDX Energy-dispersive X-ray
spectrometry

SEM scanning electronic microscopy

OH* hydroxyl radical

AFM Atomic force microscopy

RMS Root mean square

HOCI hypochlorous acid

OocClI hypochlorite ion
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