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Abstract 
 

       Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in 

purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the 

potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the 

chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was 

characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-

ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that CIP biosorption occurred mainly at 

biomass sites containing carboxyl and amino groups. The equilibrium isotherm data and biosorption kinetics were addressed in the 

present study. The biosorption data match the Langmuir isotherm model, and the maximal biosorption capacity was determined to be 

7.56 mg/g. While The pseudo-second-order model accurately described the biosorption kinetic data. Biosorbent regeneration was 

also studied using two different sodium hydroxide concentrations, the results showing that after desorption, the biosorption capacity 

decreased from 5.2 to 3.74 and 1.77 (mg/g) using 0.1NaOH and 0.5NaOH, respectively. 
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1- Introduction 
 

     Over the past ten years, attention to pharmaceuticals in 

the aquatic cycle has increased [1, 2]. Pharmaceutical 

substances frequently prevent or treat various illnesses in 

humans and animals [3]. These substances are eliminated 

in the urine and feces as the original substance or a 

combination of metabolites called pharmaceutical 

compounds (PhCs). Partial breakdown often leaves 

behind metabolites that are just as hazardous or even 

more physiologically active than the original medication 

[4, 5]. Therefore many kinds of pharmaceutical 

contaminants such as hormonal substances, antimicrobial 

agents, antacids, anesthesia, medication for inflammation, 

antipyretics, beta-blockers, tranquilizers, energizers, and 

fatty acids-lowering drugs have been found in drainage 

effluents [6]. Following their discharge into sewage 

systems, these chemicals are used in liquid services for 

waste treatment, where it is necessary to reduce 

pathogens, organic pregnancy, nitrogen, and phosphorous 

[7]. Antibiotics are a class of organic chemicals that, 

through various biochemical effects, can inhibit the 

growth or metabolic activity of bacteria. The lateral 

metabolic processes of microorganisms either produce 

them or are chemically or semi-artificially synthesized 

[8]. Most antibiotics in the environment are discharged 

from homes, hospitals, and pharmaceutical factories. The 

potential risks to human and ecological health posed by 

antibiotics found in aquatic environments from such 

sources are viewed as a new and serious problem [9] 

.Conventional wastewater treatment facilities are unable 

to remove antibiotics and microorganisms [10]. As a 

result, the rise of antimicrobial resistance (AMR) will 

probably culminate in ten million deaths and a 2-3.5 

percent decrease in the gross domestic product by 2050 

[11]. Antibiotics can be divided into subgroups, including 

ß-lactams, quinolones, tetracyclines, macrolides, 

sulphonamides, and others. These complex chemicals 

may have several functions inside a single molecule. 

Depending on the pH, they can be neutral, cationic, 

anionic, or zwitterionic [12]. Quinolones are a class of 

antibiotics with a core bicyclic arrangement connected to 

the chemical formula 4-quinolone [13]. Fluoroquinolone-

resistant bacteria are becoming more common due to the 

excessive use of these drugs and environmental pollution 

[14]. Among the fluoroquinolone antibiotics, 

Ciprofloxacin is the most commonly prescribed drug 
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worldwide. It is followed by ofloxacin, levofloxacin, 

lomefloxacin, norfloxacin, and sparfloxacin. While it is 

still widely used in Europe, norfloxacin has been taken off 

the market in the United States [15]. Bayer A.G. invented 

Ciprofloxacin in 1983 and was authorized by the U.S. 

Food and Drug Administration (USFDA) in 1987. 

Antibacterial Ciprofloxacin treats various bacterial 

infections, including those of the urination tract and lungs 

[16, 17]. Due to their ability to survive for extended 

periods in sewage treatment plants and subsequently re-

enter the watery environment, CIP creates a serious threat 

to the population's health. It has unfavorable effects on 

photosynthesis and aquatic life, in addition to encouraging 

the emergence of antibiotic-resistant bacteria [18, 19]. 

The concentration of Ciprofloxacin in the environment 

might be anything from ngL‾ ¹ to mgL‾ ¹. The 

concentration in pharmaceutical wastewater reached 31 

mgL‾ ¹ [20]. Ciprofloxacin elimination from water has 

been researched using physicochemical techniques, such 

as ozonation [21]. Oxidation is catalyzed by light [22]. In 

addition to adsorption [23, 24]. furthermore, Ion-

exchange, membrane separation, Photodegradation and 

Photo-Fenton [25-28]. The most promising of these 

technologies is adsorption due to its inexpensive price, 

high performance, flexible design, and simplicity of use 

[29]. The kind of adsorbent used is one of the most crucial 

aspects of the adsorption process. Many studies have 

suggested various adsorbents, among that are organic, 

inorganic and agricultural wastes [30]. Toxins in 

wastewater streams can be effectively removed using 

living and dead biomass, such as marine algae, bacteria, 

fungi, and yeast [31]. Dead biomass has many 

advantages, such as the lack of required growth 

conditions and nutrients in the feed solution, the ease of 

biosorption, and the ease of biomass regeneration and 

reuse [32]. The microalgae source was deemed to be the 

best option to address environmental issues because it 

produces more biofuel than other sources [33]. 

Optimising the potential for effective microalgae 

cultivation., it has been suggested that residual microalgae 

biomass could extract pollutants from the water after lipid 

extraction [34]. The primary objective of this study is to 

combine experimental and theoretical methods to 

investigate the equilibrium isotherms and kinetics of CIP 

biosorption onto extracted biomass (C. vulgaris).The 

following that the impact of biosorbent characterization 

(FTTR, SEM, EDX) on the biosorption mechanism was  

investigated. 

 

2- Materials and Methods 

 

2.1. Reagents 

 

   The regional AL KINDI pharmaceutical industries 

Company provided the Ciprofloxacin (CIP) antibiotic, 

C17H18FN3O3 (cleanliness greater than 98%, molecular 

weight M.W.: 331.3 g/mol). Other chemical compounds 

included chloroform (CHCL3, purity 99.0%, M.W.: 

119.38), which Alpha Chemika in India procured, and 

ethanol (C2H60, purity 99.7%, MW 46.07) from 

(THOMAS BAKER.INDIA). 

 

2.2. Preparation of Stock 

 

Concentrate solutions of Ciprofloxacin (CIP) were 

prepared by disappearing the necessary quantity of the 

antibiotic in distilled water, which were then diluted to the 

required concentrations. To maintain the proper pH in the 

antibiotic solution, sodium hydroxide (0.1 M) and 

hydrogen chloride (0.1 M) solutions were made. 

 

2.3. Biomass Preparation for Biosorption 

 

Bulk supplements in Henderson, USAC, supplied 

Chlorella Vulgaris (C.Vulgaris). The biosorbent used in 

this study was obtained from the waste biomass of green 

microalgae. To extract the bioactive components from the 

marine green microalga C. vulgaris, a Soxhlet extractor 

was used with organic solvents (ethanol and chloroform, 

respectively). The remaining biomass was rinsed several 

times with purified water to eliminate most remaining 

particles of solvents. The biomass was crushed and used 

after being dehydrated in a 40 degrees Celsius dryer. Our 

previous work describes the detailed procedure of the 

extracted biomass [35]. Fig. 1 demonstrates how biomass 

is transformed during the extraction process. 

 

 
Fig. 1. Raw Biomass of Chlorella Vulgaris (a) and 

Chlorella Vulgaris biomass after extraction (b) 

                          

 2.4. Biosorbent Characteristics 

 

   The biomass of C. Vulgaris was examined using a 

Fourier transform infrared (ATR, 1800, SHIMADZU, 

Japan) spectrum analyser. This analytical technique used 

a KBr disc between 400 and 4000 cm-1 to determine the 

functional groups on the surface of a C. vulgaris biomass 

sample. Next, the scanning electron microscopy technique 

(FESEM-EDS, MIRA III, TESCAN, Czech) explained 

the microalgae biosorbent's morphology. Finally, the 

fundamental composition of bio adsorbents has been 

identified using an elemental scanner (Xflash 6110; 

Burkercompany; Germany). 

 

2.5. The Biosorption Isotherm for CIP 

 

   The optimal experimental parameters were selected 

based on the results [35]. Biosorption tests were 

conducted in 200 ml Duran flasks. Each bottle contains 

fifty milliliters of CIP buffer with a starting concentration 
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ranging from 50 to 600 mg/L to analyse CIP biosorption 

equilibrium isotherms on C.Vulgaris biomass extracts. 

The acidity of the resulting solutions was adjusted by 

adding either sodium hydroxide (0.1 M) or hydrogen 

chloride (0.1 M) in small amounts. Each bottle received 

2.75 g of biomass added to it and was shaken at 200 rpm 

at room temperature for 120 minutes to ensure 

equilibrium was reached. The biosorbent was separated 

from the aqueous phase by centrifuging a 10 mL sample 

and filtering it through 0.2 m membrane filters. Using the 

HPLC chromatography model SYKAMN, researchers at 

the Ministry of Science and Technology's research center 

and investigating food contamination/environment and 

water determined the final CIP concentration. It had a 100 

l injection valve, using a C18 reversible analyzing column 

(25 cm * 4.6 mm and 3.5 m) and a UV/Vis detector set to 

278 nm. At a 1.0 ml/min flow rate, the mobile phase was 

a titrated mixture of (A=0.025 M phosphoric acid 

modified to pH 3 with triethanolamine, B=acetonitrile, 

C=methanol) (40: 40: 20). 

The following expression determined the equilibrium CIP 

biosorption capacity, qₑ (mg/g). 

 

𝑞ₑ =
(𝐶ᵢ−𝐶ₑ)

𝑚
× 𝑣                                                                 (1) 

 

   Cᵢ and Cₑ are the ciprofloxacin concentrations (mg/L) at 

the initial and end of the adsorption process. At the same 

time, m is the mass (g) of the biosorbent, and V is the 

volume (L) of the ciprofloxacin solution in contact with 

the sorbent. 

 

2.6. Kinesis of Biosorption of CIP  

 

   Kinetic tests followed the same protocol as equilibrium 

experiments. CIP adsorption kinetic was determined at 

different times (10, 30, 50, 70, and 90 minutes), and CIP 

concentrations were measured in the same way. Adsorbed 

CIP concentration (qt) (mg/g) at time t was determined 

by: 

 

qₜ =
(𝐶ᵢ−𝐶ₜ)

𝑚
× 𝑣                                                                     (2) 

 

   When t minutes have passed, the concentration of CIP 

solution in the liquid phase is denoted by Cₜ (mg/L) 

(min). 

 

2.7. Studies of Desorption and Regeneration 

 

   CIP desorption was carried out to regenerate the waste 

C.Vulgaris biomass by following the desorption protocol 

suggested by [36]. After the biosorption tests, the CIP-

loaded waste C. vulgaris biomass was dried at 40 degrees 

Celsius and brought into contact with various NaOH 

solutions. The Duran samples contained 2.75 g of 

biomass and 50 ml of NaOH with different concentrations 

(0.1, 0.5 M) sharked for 1.5 hours on a rotary shaker (200 

rpm) at room temperature. Deionized water was used to 

wash the biomass until the wash solution's pH reached 

seven. For reuse, the biomass was crushed after being 

dried at 40 °C. 

3- Mathematical Modelling 

 

3.1. Langmuir Isotherm 

 

   Maximum adsorption occurs when a single saturated 

layer of the solute molecules covers the surface of 

the adsorbent, the adsorption energy is steady, and no 

adsorbate molecules migrate along the adsorbent's 

exterior, as predicted by the theoretical Langmuir sorption 

isotherm [37]. Langmuir absorbency isotherm is depicted 

in Eq. 3 and expressed in Eq. 4 linearly.  

 

𝑞ₑ   =      
𝑞ₘ×𝐾ʟ×𝐶ₑ

1+𝐾ʟ×𝐶ₑ
                                                                             (3) 

 
1

𝑞ₑ
 =

1

qₘ
 +  

1

qₘ𝑘ʟ

1

𝐶ₑ
                                                                  (4) 

 

   Where Cₑ (in millimolar / liters) is the equilibrium 

of the remainder concentration, qₘ(in milligrams per 

gram) is the greatest amount of adsorption for the solid 

phase loading, and Kʟ (in liters per milligram) is an 

energetic static associated with the thermal capacity of 

biosorption. The Langmuir plot of 1/ Cₑ versus 1/ qₑ was 

used to determine the qₘ and Kʟ   [38].    

      The parameter for equilibrium Rʟ is a dimensionless 

constant that can be used to define the fundamental 

properties of the Langmuir isotherm. It is also known as 

the separation factor. Rʟ was determined using Eq. 5 [39].  

   

Rʟ =   
1

1+(1+𝐾ʟ𝐶ₒ)
                                                                   (5) 

 
    Cₒ = starting concentration, Kʟ = adsorption energy 

constant (Langmuir Constant). If Rʟ is greater than 1, 

adsorption is unfavorable; if Rʟ is equal to 1, it is linear; 

if Rʟ is less than 1, it is favorable. And if R ʟ is zero, it is 

irreversible. 

 

3.2. The Freundlich Isotherm 

 

   According to the Freundlich isotherm model [40]+, 

adsorption is a mechanism that occurs through surfaces 

with heterogeneity and is mediated by multi-layer 

adsorption . Linear Freundlich isotherm expression using 

Eq. 6: 

 

log 𝑞ₑ = 𝑙𝑜𝑔𝐾ғ + 1/ 𝑛 log 𝐶ₑ                                                     (6) 

 

   Kғ is the bond energy-related Freundlich constant 

(mg/g) (l/mg). The adsorption or distribution coefficient, 

denoted by the Kғ, is the amount of CIP adsorbed onto an 

adsorbent per unit equilibrium concentration. Adsorption 

that deviates from a linear relationship has a heterogeneity 

factor of 1/n.  The value represents the deviation of the 

solution concentration from a linear relationship with 

adsorption. When n=1, adsorption is linear; when n is less 

than 1, adsorption is a chemical process; and when n is 

greater than 1, adsorption is a preferred physical process 

[41]. 
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3.3. The Temkin Isotherm 

 

   The Temkin isotherm model explicitly modifies 

adsorbing species-adsorbate interactions [41]. Some of 

the presumptions made by this model are as follows: For 

all molecules in the layer, the heat of adsorption decreases 

linearly with coverage due to interactions between the 

adsorbent and the adsorbate, and (ii) binding energies 

have a uniform distribution up to a certain maximum 

energy to bind. Furthermore, The Freundlich equation 

implies that the decline in the sorption heat is logarithmic; 

however, the Temkin isotherm assumes that it is linear. 

The Temkin model can be described as follows: 

 

   qₑ = B ln (KтCₑ)                                                                  (7) 

 

Rearranging this results in the following: 

 

qe= B lnKт+ B lnCₑ                                                                        (8) 

 

   Kт is the equilibrium bind constant (L/mg) that 

indicates the highest binding energy, and B is a constant 

related to the heat of adsorption. qₑversus lnC on a graph 

to calculate  Kт and B [42], and B can be determined by 

Eq. 9. 

 

𝐵 =
𝑅т

𝑏т
                                                                               (9) 

 

   Where bт (K.J. mol ‾¹) is the constant linked with the 

sorption of the heat for exothermic (bт > 1) or 

endothermic (bт 1) sorption reactions, the constant R for 

gases is 8.314 J mol‾¹ K‾¹, and T is the absolute 

temperature [43]. 

 

3.4. Dubinin–Radushkevich Isotherm 

 

   The following equation, developed by Dubinin and 

Radushkevich [44], is another well-liked the formula for 

analyzing isotherms with a high degree of rectangularity 

has the form given below: 

 

𝑞ₑ = 𝑞𝑚𝑒−βε  ²                                                                           (10) 

 

   In this equation, qₘ represents the Dubinin-

Radushkevich single layer capability (mg/g), β (mol² 

/kJ²) is a constant associated with absorbing energy, and 

ε is the Polanyi potential associated with the state of 

equilibrium concentration according to the following: 

 

 𝜀 =  𝑅𝑇 ln [ 1 +
1

𝐶ₑ
]                                                           (11) 

 

   R reflects the gas constant (8.314 J/mol.K), Cₑ the 

equilibrium concentration (mg/l), and T is the absolute 

temperature value. The relationship between the constant 

β and the mean free energy (E, kJ mol‾¹) of sorption per 

sorbate molecule when it is transported from infinity in 

the solution to the surface solid is shown in the equation 

below: 

 

𝐸 =  
1

√2𝐵
                                                                          (12) 

3.5. Models for Kinetics 
 

   Several kinetics models, including pseudo-first-order 

and pseudo-second-order kinetic equations, as well as 

intraparticle diffusion kinetic equations, could be applied 

to the experimental data to learn more about the 

mechanisms of control in adsorption processes like mass 

transfer and chemical reaction [45]. 
 

3.5.1. Pseudo-First-order Kinetic Model 
 

   The first-rate formula for absorbing a liquid/solid 

system with reliable capacity was the Lagergren rate 

equation, which describes the physical bonding of 

pollutants onto the surface of a biosorbent [46]. Equality 

of pseudo-first order by Lagergren. 
 

𝑞ₜ =  𝑞ₑ(1 −  𝑒‾ᵏ₁ᵗ  )                                                          (13) 
 

   Consequently, to be used in the kinetic analysis, Eq. 13 

is linearised as 
 

ln(𝑞ₑ −  𝑞ₜ) = ln 𝑞ₑ −  𝑘₁𝑡                                                   (14) 
 

   where qₑ and qₜ are the equilibrium and time-dependent 

adsorption capacities in mg/g, respectively, and k₁ (min‾¹) 

is the pseudo-first-order adsorption rate constant. 
 

3.5.2. Pseudo Second-order Equation 
 

  Ho's pseudo-second-order kinetics model considers the 

chemisorption adsorption rate as the rate-limiting step 

[47]. The equation can be written as:           

                                                            
1

𝑞ₑ − 𝑞ₜ
=  

1

𝑞ₑ
+  𝑘₂𝑡                                                                (15) 

 

To convert Eq. 15 to a linear form, we have 
 

𝑡

𝑞ₜ
=

1

𝑘₂𝑞²ₑ
 +

1

𝑞ₑ
 𝑡                                                                  (16) 

 

The letter k₂ (g/mg.min) symbolises the pseudo-second-

order sorption rate constant. the k₂, R ², and qcal values. It 

is possible to identify the linear relationship by examining 

the plot of t/q t vs t produced by Eq. 16. 
 

3.5.3. Intraparticle Diffusion Model 
 

   The ability to reliably identify the rate-control phase in 

a sorption process is paramount. In film diffusion, a thin 

liquid film carries the solute from the bulk solution to the 

adsorbent's surface. After that, the adsorbate molecules 

attach to the sorbent's active sites. Finally, The sorbent 

absorbs the solute through intraparticle diffusion, which 

travels through the sorbent's pores and binds to the 

material's active sites [48]. A model of intraparticle 

distribution based on the concept formulated by Weber 

and Morris was tested, allowing us to determine the 

diffusion mechanism [49]. Biosorption processes typically 

share an empirically observed functional connection 

where uptake varies roughly proportionally with t ½ 

rather than using the contact time t. Describes the 

intraparticle diffusion mechanism shown in Eq. 17:    
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𝑞ₜ =  𝑘ₚ𝑡½ +  𝐶                                                                        (17) 
  
  C is the intercept, and kₚ is the intraparticle diffusion rate 

constant (mg/gmin½), which can be derived from the 

slope of the qₜ versus 𝑡½  Linear plot.  
 

4- Discussing the Results 

 

4.1. Characteristics of Biosorbents 
 

4.1.1. FT-IR 
 

   FT-IR spectroscopy investigated the interactions 

between CIP ions and the extracted C. vulgaris biomass. 

The primary bands typical of the functions group are 

listed in Table 1. 

 

4.1.2. SEM- EDX 

 

   Scanning Electron Microscopy (SEM) analysis was 

used to observe the textural characteristics of the biomass 

surface. Fig. 2A  illustrates that The cells in the 

unextracted biomass sample appeared completely and 

clumped together to form a sphere [56]. Fig. 2B revealed 

that the cells had cracked and distorted surfaces. Some 

microalgal cell structures were altered by Soxhlet 

extraction, while others remained unaffected, and the 

membrane cell showed no signs of harm, agree with [57]. 

Also, the biomass exhibits numerous free particles of a 

substance, which could give the biomass more contact 

surface, similar to [58]. According to EDX analysis (Fig. 

3a), the primary elements in original C.vulgaris biomass 

are carbon (63 %), oxygen (13.08%), and nitrogen 

(18.98%). Additionally, Minor elements include Mg, P, 

and Ca (1.25%, 2.43%, and 1.21%, respectively), close to 

what was reported by [59]. A slightly different 

composition was displayed (Fig. 3b) due to the chemical 

processes used in extraction. Carbon (61.7%), oxygen 

(7.09%), and nitrogen (28.1%) were the major chemical 

elements. While the trace elements P (1.54), Mg (0.91), 

and Ca(0.65)  [36]. 

 

Table 1. FTIR Functional Groups and Spectral Bands for Wasted C.Vulgaris Biomass 
Wavenumber (cm-1 ) attribution bands of absorption (cm-1) 

3448.72 

3278.99 

correlated with stretching vibrations of O-H and N-H [50] 3029-3639 

2927.94 Lipids and carbohydrates had strong C-H vibrations [51] 2809-3012 

1654.92, 1543.05 Modes of vibration for amide I and amide II (protein fraction) [52] 1583-1709 

1234.44 Atomic acid (other phosphate-containing compounds) Vas> P=0 

phosphodiester stretching [53] 

 

1191-1356 

 

1022.27 Polysaccharide carbohydrates with the formula V(C-O-C) [54] 980-1072 

1458.18 
1076.28 

Aromatic compounds C=C 
Alcohols, phenols, ethers C-O 

[55] 

1600–1420  
1300–950 

 

 

 
Fig. 2. SEM Image of Original C.Vulgaris Biomass (A) 

and Waste C.Vulgaris Biomass (B) 

 

4.2. Mechanisms of Biosorption for CIP 

 

   In general, the characterization and variable studied 

above may support the mechanism of removal of 

microalgae waste. The CIP ions are attached to the 

biomass by a complex process involving many 

techniques, including ion exchange, surface precipitation, 

and surface complexation, as shown in Fig. 4. Because of 

concentration gradients, CIP ions diffuse across the cell 

wall and membrane before being attached to the biomass 

[60, 61]. In particular, this is because the biomass's cell 

wall contains a variety of functional groups, including 

amines, carboxyls, hydroxyls, phosphates, sulfhydryls, 

etc. The FTIR analysis supported this explanation and 

was agreed upon by [62]. The binding of CIP to 

microorganisms via biosorption relies on several different 

mechanisms. Some of these mechanisms include ion 

exchange due to polysaccharides present on the cell wall 

of the microorganism, which contain ions like+, Ca2+, P 

and Mg2+The presence of elements is demonstrated 

through analysis EDX, and physical Biosorption due to 

Van der Waal's force. Comparable behavior to the results 

obtained by [63]. Electrostatic, hydrophobic, hydrogen-

bonding, and - electron donor-acceptor interactions with 

CIP are all made possible by the carboxylates on the 

surface of dead biomass. In addition, CIP+ can be 

absorbable through ion exchange H+, and mineral ions 

can be shifted out for CIP+ during an ion exchange [64]. 

   Additionally, pH. plays a crucial role in the biosorption 

procedure. Acid dissociation constants for CIP are pKa1 

and pKa2, which are 6.1 and 8.7, respectively [65]. CIP 

molecules mainly exist as cations (CIP+) due to the amine 

group in the piperazine moiety being protonated at pH 

6.1; at pH values greater than 8.7, the carboxyl group of 

CIP molecules loses a proton, transforming the molecule 

into an anion (CIP) [66, 67].  
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Fig. 3. EDX of Original C.Vulgaris Biomass (a) and Waste C.Vulgaris Biomass (b) 

 

 
Fig. 4. Mechanisms for the Biosorption of CIP. Several 

Mechanisms Include Chemical Binding (complexation, 

chelation), Ion Exchange, Physisorption, and Precipitation 
 

4.3. CIP Biosorption Isotherms 
 

   Understanding the forces influencing the adsorbate and 

biosorbent interaction is essential for optimizing 

biosorption. A proper equilibrium correlation must be 

established to compare different adsorption systems' 

ability to remove pollutants [68]. The equilibrium data 

have been correlated with four different isotherm models: 

Authors like Langmuir, Freundlich, Temkin, and 

Dubinin-Radushkevichd. The optimal isotherm to 

describe the biosorption process was determined by 

comparing their R² values. Fig. 5 shows different 

isotherm model plots. Table 2 displays the results of the 

biosorption models utilized in this investigation. 

   The Langmuir isotherm R² value from the biosorption 

models was 0.9949. This result demonstrates that the 

isotherm model fits the experimental data well. Found 

similar outcomes [69]. The Langmuir isotherm assumes 

the surface is covered by a monolayer of adsorbate when 

maximal monolayer biosorption has occurred. This 

biosorption isotherm can determine the optimal 

biosorption capacity that matches monolayer coverage on 

C. vulgaris biomass [70]. The extracted C. vulgaris had a 

maximum biosorption capacity of 7.56 mg/g, which is 

approximately the experimental biosorption capacity of 

6.8 mg/g [71]. The separation factor (Rʟ) value ranged 

from zero to unity, indicating that the procedure was 

favorable and the data were well-fit to the Langmuir 

isotherm [72]. The Freundlich model's result of n > 1 

indicates that the sorption process was simple, good, and 

physical [73]. The sorption reaction is exothermic if bт > 

1 and endothermic if bт 1. In the concentration range 

studied, the bт value for C.Vulgaris biomass was a 

positive number, indicating that the process was 

exothermic [43]. The Dubinin-Radushkevich model's 

calculated apparent energy of sorption, E, can be utilised 

to make educated guesses about the sorption mechanism. 

The sorption type is considered physical if this value is 

less than eight kJ mol-1. The process is chemisorption if 

the activation energy is between 8 and 16 kJ mol-1. The 

findings suggest that the Biosorption of C. vulgaris is a 

physical process following [74]. 
 

Table 2. The Parameters for Each Isotherm Model 

Utilized in the Experiments 
Isotherm 

model 

Parameter     R²  

Langmuir qₘ (mg/g)= 7.565 

Kʟ (L/mg) = 0.006 

Rʟ=0.081 

0.994 

 

Freundlich Kғ[(mg/g) (l/mg) ⅟n ]= 0.144 

n= 1.595 

0.886 

 
Temkin Kт(L/mg) =0.152 

bт (KJ mol‾¹) =1.630 

0.813 

 

Dubinin–

Radushkevich 

qₘ(mg/g)= 3.442 

β= 64.125 

E(kJ mol‾¹) = 0.088 

0.832 

 

4.4. CIP Biosorption Kinetics  
 

   Various kinetic models, including pseudo-first-order, 

pseudo-second-order, and intraparticle diffusion, aid the 

biosorption rate for extracted C.Vulgaris biomass. Fig. 6 

illustrate the practical data acquired from the kinetic 

investigation to remove CIP ions from aqueous solutions 

using C. vulgaris. Table 3 shows the results of fitting the 

experimental data, including the parameters of kinetics 

and correlation coefficients. 
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Fig. 5. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherm Models for Biosorption on Waste 

C.Vulgaris Biomass

 

Table 3. The Kinetics Constants for CIP Biosorption by Waste C. Vulgaris Biomass 
Experimental   First order kinetic Second order kinetic Intraparticle diffusion 

qₑₓₚ (mg g‾¹) k₁ (min‾¹)  qₑ(mg g‾¹)       R²    k₂ (g mmol‾¹min‾¹)    qₑ (mg g‾¹)      R²    kₚ(mg/g. min½)      C                R² 

      5.368       0.007         3.719      0.923          0.006          4.340         0.990   0.278                    0.575           0.973 

   The results showed that the pseudo-second-order model 

had a better determination of the coefficient (R2: 0.9908) 

than the pseudo-first-order model (R2:0.9234). The 

capability of biosorption calculated using the model of 

second order agrees well with the experimental value 

(qexp.= 5.368 mg/g), which is higher than the value 

predicted by the model of pseudo-first order (qe cal. = 

4.34046 mg/g) [75], These findings prove that the 

biosorption of CIP ionic onto C. vulgaris Biomass 

proceeds according to a pseudo-second-order kinetics 

approach. This model assumes that chemical biosorption, 

which involves valence forces through the sharing or 

exchange of the electrons between the sorbent and the 

sorbate, is the limitation step. The findings were 

consistent across researchers [76, 77]. The adsorption rate 

may be constrained only by intraparticle diffusion if the 

plot is straight and passes through the origin. 

Alternatively, the adsorption could be regulated by a 

number of different factors [78]. Fig. 6 exhibits a linear 

relationship. Since the model's generated graph does not 

pass through the beginning point, the intra-particle 

diffusion process is the adsorption mechanism, although 

additional agents are in operation [79]. The boundary 

layer's impact is represented by the intercept of the plot. 

Higher intercepts indicate that rate-limiting surface 

sorption is more critical [44]. 

 

4.5. Compared to Other Adsorbents 

 

   Table 4 compares the adsorption capacity values of the 

extracted C. vulgaris to the CIP adsorption capacities 

reported for various other adsorbents (activated carbon, 

agricultural waste, clay organic residues, etc.). The CIP 

removal capacity of the extracted biomass (C.Vulgaris) 

was more significant than or comparable to kaolinite, 

agricultural residues, and organic waste. Extracted C. 

vulgaris had a lower CIP removal capacity than activated 

carbon, modified biomass, and NH-DGS. However, its 

lower cost and economic efficiency make it a compelling 

alternative [80]. 
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Fig. 6. Kinetic Models Implemented to Describe the CIP Adsorption on the Waste C.Vulgaris Adsorbent 

Table 4. A Study Comparing the Removal of CIP using C. Vulgaris Biomass Waste and other Adsorbents 
No. adsorbent Adsorption 

capacity (mg/g) 

Conditions 

pH, initial concentractio,temperture 

Ref 

1 modified biomass of green alga 
Scenedesmus obliquus 

39 pH: 7     I.C:50 mg/l [81] 

2 Activated carbon from the banana stalk 49.7 pH: 8     T:323K  

I.C:50 mg/l 

[82] 

3 Dialium guineense seed waste (DGS) 

modified by sodium hydroxide form  

NH-DGS 120.34 

9.17 

                             

120.34 

pH: 6     I.C:100 mg/l [83] 

4  activated sludge (AS) 3.39  PH: 7    I.C: 300 ng mL‾¹ [84] 

5 organic residues:  cor cob (CC) 

  rice husk (R.H.) 

13.76 

2.33 

PH: 6         I.C:  60 mg L‾¹ [85] 

6 biocomposite of 50% regenerated-reed 

(R.R.) and 50% need charcoal (ChR) 

17.3 pH:10.42      I.C :75 mg/L [86] 

7 modified coal fly ash 1.55 pH: not adjusted  T:313K  I.C:100 mg/l [87] 
8 kaolinite 6.3 pH :3 to 11 

 IC 0.2–1.0 mM 

[88] 

9 extracted biomass(C.Vulgaris) 6.8 pH :7      I.C:450 mg/l This study 

 

4.6. Studies of Desorption and Regeneration 

 

   Reusing biosorbents after removing CIP from aqueous 

solutions is a cost-effective option. Biosorbent 

regeneration efficiency using a single cycle of desorption 

agent was investigated in this study. Saturated biomass is 

regenerated by adding NaOH at varying concentrations 

and then compared to the unregenerated adsorbent. Fig. 7 

shows that the biosorption capacity declined from 5.2 to 

3.74 and 1.77 (mg/g) using 0.1M NaOH and 0.5M NaOH, 

respectively, after desorption. The progressive 

degradation of the biomass and unfavorable effects of the 

eluting agent on the sorption sites cause a decline in 

biosorption performance [89]. The low biosorption 

capacity for biomass regenerated with 0.5 NaOH may be 

attributed to the presence of electrostatic repulsion 

between sites of negative charge on the waste C.Vulgaris 

biomass and the anionic CIP molecules at High pH, 

further suggesting that the concentrated NaOH was 

harmful to biomass [90]. The result indicates that CIP 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sludge
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loading capacity decreased after regeneration. However, 

after being treated with 0.1 M sodium hydroxide, the 

desorbed biomass could be reused without losing little of 

its biosorption capacity [91]. 

 

 
Fig. 7. Cycles of CIP Bisorption for the Extracted 

C.Vulgaris Biomass and Regeneration Extracted 

C.Vulgaris by NaOH at Different Concentration (0.1,0.5 

M) 

 

5- Conclusions  
 

   The study illustrated that the used biosorbent contains a 

variety of functional groups, according to FTIR analysis, 

which supports the biosorption mechanism. After the 

extraction process, the contact area increased, as seen by 

scanning electron microscopy. The equilibrium data for 

CIP biosorption onto waste biomass were well fit by the 

Langmuir isotherm equation, with an R2 of 0.994. The 

Dubinin-Radushkevich model's free energy value (E = 

2.56 kJ mol‾¹) and the Freundlich model's factor (n=1.59) 

were used to characterize the underlying physical 

mechanism, and the exothermic nature of the process is 

predicted by the Temkin model. The pseudo-second-order 

model matches the experimental data better, indicating 

that chemisorption was the preferred rate controller for 

biosorption. In the regeneration stage, the current study 

indicates that 0.1 NaOH is more effective than 0.5 NaOH 

for recovering CIP molecules from the waste of 

C.Vulgaris biomass. Waste microalgae biomass can be 

used as an environmentally friendly, efficient, and cheap 

adsorbent for removing contaminants from wastewater.  
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ة الاستخلاص من بأستخدام نفايات عملي (CIP)الامتزاز الحيوي للسيبروفلوكسين 

 دراسة توازن درجة الحرارة والحركية :الطحالب الدقيقية
 

 ، *2 محمد ابو بكر الماري ، 1 محمود خزعل حمادي ،1ايناس صلاح مجيد 

 
 داد، العراقجامعة بغ ،كلية الهندسة ،قسم الهندسة الكيمياوية 1

 قسم الهندسة الكيمياوية، جامعة ملايا، كوالالمبور، ماليزيا 2
 

  الخلاصة
 

من بين  .تالبيئية في تنقية الملوثاالجدوى الاقتصادية و  الية مختلف المواد المازة لتعزيزيدرس العلماء فع   
يمكن  والتي ،الاساسية لانتاج وقود الديزل الحيوي هي نفايات الكتلة الحيوية للطحالب الدقيقةالمنتجات الثانوية 

ية عد عملباستخدامها كمادة مازة رخيصة لمعالجة التلوث. في هذة الدراسة ,تم استخدام الكتلة الحيويةالمتبقية 
( من (Ciprofloxacinسين المحتمل لسيبروفلوك لاختبار الامتزاز الحيوي  (C.Vulgaris) الاستخلاص

ل أظهرت تحلي .FTIR,SEM,EDX فحوصات . تم تميز قدرة المادة المازة بأستخدامالمحاليل المائية المحاكاة
ي أن الامتزاز الحيوي لسيبروفلوكسين حدث بشكل أساسي في المواقع التي تحتو  شعة تحت الحمراءالامطياف 

ز متزاالا . تم تناول بيانات تساوي الحرارة وحركيةوالامينية على الكتلة الحيوية ةعلى مجموعات الكاربوكسيل
امتزاز  مع قدرة Langmiurتتوافق بيانات الامتزاز الحيوي مع نموذج  متساوي الحرارة  .الحيوي في هذة الدراسة

رجة بواسطة نموذج الد,بينما تم وصف البيانات الحركية للامتزاز الحيوي بدقة  g/mg7,56حيوي قصوى تبلغ  
وديوم من هيدروكسيد الصأيضا باستخدام تركيزين مختلفين  تمت دراسة  تجديد مادة الامتزاز الحيوي  الثانية.

 (mg/g) 3,74,1,77الى  5,2انخفضت  قدرة الامتزاز الحيوي من  ،,واظهرت النتائج أنه بعد الامتصاص
 .. على التوالي,NaOH0,1. 0.5 NaOHبأستخدام 

 
 .لوكسينالسيبروفي، مياه الصرف الصحمعالجة  ،الامتزاز ،بقايا  الكتلة الحيوية كلوريلا فلكاريس، الطحالب الدقيقةالكلمات الدالة: 

 


