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Abstract

In recent years, the Eridu oil field has emerged as a key player in the petroleum industry in southern Iraq as it is the biggest Iraqi oil
discovery in 20 years. Extending along a vast area of 5806 km?, the field has commercial oil reserves in formations such as Mishrif,
Nahr Umr, Zubair, and Yamama. However, drilling operations in this field have faced significant challenges, including delays and
suspensions caused by wellbore instability. One of the main obstacles encountered during drilling operations in the Eridu oil field is
the occurrence of partial losses in weak vugs dolomite formations, as well as issues related to sever borehole instabilities such as
drilling in tight holes, caving, and breakout due to shear failure in the borehole wall. To address these challenges, a 1 D
Geomechanical model (1-D MEM) was constructed using data from vertical wells to better understand the underlying causes of
drilling problems. The findings of the 1-D MEM, particularly in relation to mechanical rock properties, rock Elasticity factors, pore
pressure, and fracture gradient complex formations like Tanuma and Mishrif, were instrumented in planning drilling operations for
inclined and highly deviated wells. By utilizing open hole well logging data and calibrating the model with various resources of data
including drilling observations, core mechanical analyses, and pore pressure measurements, a more accurate assessment of wellbore
instabilities was achieved. The analysis revealed that many of the wellbore instabilities, such as pack-off, breakout, and stuck pipe,
were attributed to the insufficient mud weight that failed to support the rock in the borehole wall. To avoid these issues, it was
determined that a safe mud weight range of 11-12.5 ppg is necessary to prevent wellbore instability in shale formations. The study
also highlighted the importance of using proper mud weight to prevent shear failure and other drilling complications. The findings of
this study provide insights that can be utilized as a cost-effective tool for planning directional and horizontal drilling operations in the
Eridu oil field. The accuracy of the failure criteria and geomechanical model is significantly superior and aligns with the analysis of
breakouts observed in the caliper and image logs.
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1- Introduction
formation and eventual tensile failure of the formation.

Wellbore instability occurs due to chemical reactions  yjgh mud weight can reactivate natural open fractures by
between the formation and the drilling fluids, as well as intruding drilling fluid into them, producing major

an imbalance between the wellbore pressure applied and  gyjjjing “jssues. However, sediment-formation chemical
the fluid pressure in the formation. [1]. The problems with  jnteractions may make shale zones unstable [4].
the mstablll_ty of the wel!bore during drilling operations,  Horizontal and highly deviated wells under normal fault
an appropriate well design needs to be made for the  gyress regimes are more problematic than low-inclined
formations that will be drilled and maintained for  \ye|is due to wellbore compressive or shear failure. As the
production, this means that the in-situ stress state, pore  \ye||hore stress difference approaches its maximum with
pressure, and Geomechanical properties of the reservoir  jnclination, wellbore stability difficulties become more
formation need to be understood [2]. The shale formations  ypvious therefore accurate good trajectory and mud

such as the Tannuma, Ahmadi, Khasib, and portions of  \ejght design are critical to avoid equipment downtime,
Zubair and Mishrif formations account for approximately  NpT ang expensive complexity [5].

70% of the downhole issues encountered when drilling to
the targeted pay zones [3]. Chemically, mud weight
influences instability. To ensure stability, the mud weight
must be maintained within a certain range. It should be g ol field was discovered in Mishrif B formation
greater than the pore pressure gradient value t0 prevent  agor rilling the first exploration well Eridu-1 (3168 m

breakout fail_ure, and it must bt_e less than the formation MD, 3150 m TVDSS). Many drilling problems were
fracture gradient to prevent the issue of mud loss into the encountered while drilling Eridu-1 and the operation
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deviated from the planned program as shown in (Fig. 1).
The Eridu oil field within the area in the South-West part
of the Republic of Iraq, on the boundary between the Thi-
Qar and Muthanna Provinces, at 120 km to the West from
Basra, 150 km to the West from the West Qurna-2 oilfield

as shown in (Fig. 2). The total field area is 5665 square
kilometers (before expansion). In accordance with the
approval of the Ministry of oil (MoO) regarding
expansion of the Block 10 Contract Area for 141 sq. km,
the new area of Block 10 is 5806 sg. km [6].
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Fig. 1. Example from Drilling Operation Problems in Exploration Well ER-1 [6]
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2- Methodology

Perform simulation studies including:

1- In-situ stresses;

2- Rock strength;

3- Formation pore pressure (PP) prédiction.

4- Borehole stability prediction.

5- Recommendations for well trajectory planning, and

critical angles (inclination and of

penetrating the unstable zones.

azimuth)
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6- Recommendations for mud weight.

3- Geomechanical Workflow

Geomechanics is the study of the relationship between
geology and the mechanical properties of rocks. In other
words, it focuses on the effects of stress on the
deformation or failure of rocks as a result of changes in
stress direction, anomalous pressure, temperature, and
fluid flow resulting from production [7]. To understand
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the reason behind the borehole problems such as (losses,
breakout, and stuck) a 1 D Geomechanical model was
conducted to mitigate borehole instability by estimating
the Safe mud weight window used to drill 12 %’ and 8 %

the distance between the ground level and the rig floor
(m). TVD is the true vertical depth (m). A, and a are
fitting parameters.

** hole sections as shown in Fig. 3. o e EXTAPOLATE .
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Fig. 3. Geomechanical Work Flow
3.1. Collecting data

The necessary data used to build a basic 1D-
MEM.including gamma ray, density, sonic logs
(compression and shear slowness), Image log (FMI),
caliper, mud logs (master logs), formation pressure
measurements, and laboratory measurements [8].
The data set was acquired and retained from six vertical w
ells in order to predict wellbore problems particularly, Ca
ving shales in the Tanuma Formation and breakout pheno
mena in the Mishrif Formation. To build a 1-D
geomechanical Model open hole logs measurements,
core analysis data, and drilling observation data should be
utilized in software [9]. To investigate
wellbore instability, the Mogi Coulomb and Stassi d' Alia
failure criteria were applied.

3.2. Vertical Stress

Is the pressure exerted on a point by the weight of fluid-
bearing formations above it [9]. It is one of the major
parameters of each analysis of the Geomechanical model.
In the current study, the vertical stress is calculated by
using the extrapolation method to fill the air gaps between
bulk density logs in the computing process of overburden
stress. Density is extrapolated up to the mud line by
applying the following geometric fit (Eg. 1) [11], by
applying this equation, the density of the unlogged
interval is estimated as shown in Fig. 4.

1)

Where: p mudline is the density at the ground level
(The density of the soil is 1.85 gm/cc). Air Gap represents

p extapolated = p mudline+ Ao x (TVD — Air gap)
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Method in ER 2
3.3. Pore pressure

Pore pressure is a very important mechanical parameter
that is used for determining the horizontal principal
stresses in the ground and to predict a safe mud-weight
window for drilling a stable wellbore. [12]. Abnormal
formation pressure is the difference between subsurface
fluid interstitial and pore pressure. The hydrostatic
pressure has a direct proportionate relationship with the
total height of a water column that stretches from the
ground up to the attention formation. Because of this, the
pore pressure tends to vary quite a little from one location
to another. Nevertheless, the standard computed value is
widely considered to be 0.433 times the depth in psi for
fresh water and 0.465 times the depth in psi for salty
water [13]. Resistivity and sonic logs could be utilized to
derive the pressure directions and estimate the pressure of
the pores in shale. The pore pressure estimation and
calculations must be executed continuously [14]. In the
current study, the Eaton slowness method was used to
estimate pore pressure. Eaton calculation provided
reasonable results by utilizing concerned data (open hole
logs, core analysis data, drilling and mud report
observations) the validity of the Eaton model has been
checked by the real pressure measurement which is
Modular Formation Dynamics Tester (MDT), and these
pressure point match with Easton calculation by using
Techlog 2021 software (Fig. 5). Eq. 2 was used to
estimate pore pressure.

Pp = OBG — (0BG — P,,). (i%:)x 2)

Where (At,) is the transit time of sonic wave in shales at
the normal pressure (Ato) is the transit time of sonic in
shales which comes from the well logging. x: dependent
on the normal compaction trend line, OBG, overburden
gradient, P,,: is the gradient of normal hydrostatic pore
pressure.
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Static Young's Modulus Correlation (YME_STA) method
was used to compute (UCS), the mud weight window and
wellbore stability are determined by unconfined
compressive strength (UCS), also, it is critical for
reservoir subsidence and acidification studies [18]. Fig. 6
depicts the rock strength parameters derived from the
(Tech-log software program 2021), with the result
demonstrating how the software output matched with core
analysis laboratory tests that are shown in distributed
points. Friction angle was calculated from GR. with a
linear correlation, this approach maps Gamma Ray to
Friction Angle. To the friction angle, a cutoff is applied.
GR 40 g API is mapped to FANG 35 deg. with default
parameters and GR 120 g API is mapped to FANG 20
deg. The computed FANG is forced to 15 degrees if it is
less than that. If FANG is more than 40 degrees, it must
be 40 degrees. [11] see Fig. 7.
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Fig. 5. Pore Pressure Estimated by Eaton-Slowness
Method in ER4, ER6 and ER7

3.4. Elastic properties

Both the density log and sonic logs (P wave and S wave
delay) are frequently used to estimate the elastic
parameters of the rock [15]. However, the parameters are
three to four times larger than their actual values and must
be converted to their static values using rock type and
geological context correlations. A Generic - John Fuller
Correlation which gave best matching when calibrated
with core measurement data (Triaxle test results).

3.5. Rock Strength

Rock mechanical properties directly impact the stability
of the wellbore; in general, there are two methods utilized
to determine rock mechanical properties, direct laboratory
measurement and indirect interpretation of well
logging data [16]. Using proper laboratory techniques
increases the direct method's precision but is costly and
time-consuming. In addition, obtaining a comprehensive
profile of formation strength is difficult without
conducting numerous experiments. The indirect method
uses acoustic log data and log strength correlations to
predict rock strength. This method requires precision
experimental data to establish correlations between force
and velocity [17]. The strength parameters: unconfined
compressive strength UCS, Friction angle FANG, as well
as cohesive strength, are considered the most important
rock properties that are used in wellbore stability and
drilling workflows. These parameters were computed
from compressional caustic which provide the best
matching with core laboratory test results. Plumb Generic
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3.6. Magnitude of Horizontal stress (Maximum and
minimum)

The maximum horizontal stress is considered the most
challenging parameter in the Geomechanical model
because it is related to the rock failure with a significant
amount of uncertainty, the minimum horizontal stress is
determined by the leak-off test [12]. The magnitude of
horizontal stresses was calculated depending on
measurements of vertical stress, pore pressure,
mechanical properties, strain, etc. Poro-elastic horizontal
strain model was applied to calculate the magnitudes of
horizontal principal stresses using egs. 3 and 4 below:

2v E vE
aPp+ eyt e

Oh = égv + 1;—:; 1-v? (4)

Where: v is Poisson’s ratio, E is Young’s Modulus, o is
Biot coefficient, g, is the minimum horizontal strain, and
ey is the maximum horizontal strain. Fig. 5 shows the
estimation of pore pressure, Elastic properties, and In-situ
stress for Eridu A. The result was calibrated with a core
laboratory test. Various fault regimes were shown for
intervals of interest as a result of the huge tectonic
movements that Irag was subjected to. In other words, in
the South of Iraq stratigraphic column of the Upper/Late
Cretaceous period witnessed a geodynamic inversion
from the extensional to compressional tectonics
movements [19]. The elastic rock properties and rock

v -2v E vE . -
oy =1,0v+ —aPp + et (3)  mechanical strength values proposed for wells in the
Eridu oil field are presented in Table 1.
Table 1. Average Elastic Rock Properties and Rock Mechanical Strength Values
. Young modulus . . o unconfined compressive  Tensile strength  Friction angle
Formation YME (Mpsi) Poison Ration Pr % strength UCS (psi) (psi) (degree)
Hartha 1.8-25 0.19-0.25 7515- 9641. 750-968 31-33
Sadi 1.4-16 0.21-0.24 5581.9 -6274.2 560-627 34-36
Tanuma 1.09-1.7 0.22-0.28 4496.5-5807 449-580 29.09-36.73
Khasib 1.02-1.6 0.2-0.25 4343.5-6358.6 434-536 34.5-38.8
Kifil 1.23-2.4 0.26-0.3 4094.4-5528.8 420-550 32-37
Mishrif A 1.23-2.4 0.24-0.3 5201- 6151 520-615 35-38
Mishrif B 1.1-2.3 0.2-0.28 3615.4 -5783 361-578 33-37
Rumaila 1.1-2 0.22-0.24 5927 -6586 592-658 26-32
Ahmadi 0.9-1.6 0.2-0.31 4500-5898 505-625 26-29

4-  Wellbore Failure and Prevention

When a borehole is drilled into the rock, stresses are
redistributed. A yield zone may form around a borehole if
the stresses exceed the vyield criterion. The wellbore
instability study includes shear and tensile failure
identification modeling. Various failure criteria, including
(Mohr-Coulomb, Mogi-Coulomb, and Stassi d’ Alia
failure criteria), were used to predict the shear failure
around the well bore. In the current study, the criteria that
are used to determine the failure around the wellbore were
(Mogi Coulomb and Stassi d’ Alia failure criteria). The
results shown in Fig. 8 to Fig. 10, indicate that the two
methods are a good match with caliper logs, but the
results from the Mogi—coulomb criterion method showed
the best agreement with breakout observed in caliper log
Fig. 9, whereas the results from the Stassi d’ Alia failure
criteria method show overestimated failure from what is
actually present Fig. 10, so the Mogi-coulomb criteria is
selected to predict the failure for Eridu oil field. Mogi
failure criteria consider the effect of the intermediate
stress component in the failure analysis, which is the best
indication for predicting the failures around the wellbore
during drilling [20]. Eq. 5 represents the Mogi-coulomb
parameters whereas (Eg. 6) shows the Stassi d’ Alia
failure:

()

Where: toct %J(al — 02)2+ (02 — 03)?> + (03 — 01)?,
La=22cos (9) , b =22 sin ().

Toct =a+b om,2

_ gl+o2
Um,2— T
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Where: toct: octahedral shear, C: cohesion strength
(psi) and the @ is the internal friction angle (degree),
stress; a & b: strength parameter; om,2: mean effective
stress.

Stassi

[(01 = 03)% + (01 — 02)* + (0, — 03)%] = 2(UCS—T,)(0y + 0, +

03) + 2T,UCS (6)
Where: o¢;: Maximum Principal Stress (psi), os:
Minimum Principal Stress (psi), o,: Intermediate
Principal Stress (psi), UCS is the Unconfined

Compressive Strength (psi), and Ty is the tensile strength.

4.1. Sensitivity analysis for the most problematic
formation in the Eridu oil field

Analysis of mud weight sensitivity to wellbore
orientation establishes the relationship between required
mud weights and wellbore inclination and azimuth at a
given depth [21]. Stereonet diagrams demonstrate that the
wells are more stable with deviation ranging between (0-
30 °). On the other hand, potential breakdown failure
occurs at an inclination greater than 50 degrees toward the
max. horizontal stress orientation. Even if the weight of
the mud is low, the resulting stereonet plots demonstrate
that the inclination between 0 and 40 degrees is the most
stable concerning the shear failure. Even with a high mud
weight, shear failure can happen for inclines between 40
and 90 degrees in both the direction of the minimum
horizontal stress and the direction of the maximum
horizontal stress, as shown in Fig. 11 to Fig. 16 in
(Tanuma, Mishrif, and Ahmadi formation) the lithology
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of these formations contains shale and shear failure on this analysis of the Eridu oil field, the wellbore
observed. Also, the plot showed no effect on the Azimuth  trajectory should be designed to avoid a high deviation, or
on the mud weight. The results indicate that the safe mud  the mud weights should be sufficient to prevent collapse

weight window of shear failure (breakout) narrows in  failure and tolerable limited mud loss.

wells with an inclination greater than 35 degrees. Based

Fig. 8. Wellbore Instability of ER- 7 by Mogi-Coulomb Criteria
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5- Conclusions

The main problem identified in the Eridu oil field is
shear failure rather than tensile fracturing of the
formation, leading to significant losses. A single depth
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sensitivity analysis has revealed that the minimum
horizontal stress orientation is at 140 degrees from the
north, while the maximum horizontal stress orientation is
at 50 degrees from the north. This indicates that shear
failure is the predominant factor, with no evidence of
formation tensile failure. To mitigate wellbore instability
problems, it is recommended to maintain a mud weight
range of 11-12.5 ppg. According to the results of the
depth sensitivity analysis and fault regime in the Eridu oil
field, the most effective approach for drilling deviated and
horizontal wells is towards the minimum horizontal stress
direction, which is at an angle of 140 degrees from north.
The fault regime in the Eridu oil field is divided into two
regions: strike-slip fault regimes in carbonate rocks and
normal fault regimes in clastic rocks. It was observed that
the mud weight window narrows in the Tanuma, Ahmadi,
and Mishrif formations when the inclination exceeds 30
degrees. Additionally, there was a lack of sufficient mud
weight used in drilling vertical wells, specifically in the
Tanuma, Mishrif, and Ahmadi formations. It is
recommended to use a mud weight of 11.5 ppg in the
Ahmadi formation, 12.5 ppg in the Lower section of the
Mishrif formation, and the Tanuma formation to address
these issues effectively.
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