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Abstract

Shear wave is a crucial parameter for assessing the wellbore stability, the stress response, and rock deformation. It is essential for
constructing the mechanical earth model (MEM) for many applications related to reservoir geomechanics including wellbore
stability, sand production, hydraulic fracturing, and fault reactivation. However, shear sonic data is often omitted during the well-
logging measurements for cost and saving purposes. To overcome this challenge, recent research has been focused on determining
shear wave velocity through the use of core plugs, empirical correlations, artificial intelligence techniques, and multiple regression to
quantify and evaluate the mechanical properties of subsurface formations without performing direct measurements at the wellbore.
The greatest difference between this study and the literature is to predict the shear wave velocities for three sedimentary rocks based
on conventional well logs.

This study has been conducted on datasets of two wells drilled in the East Baghdad oilfield, for which there is a lack of shear wave
data. Two formations (Tanuma and Zubair formations) within the production section of this field were conducted to develop new
models for determining the shear wave velocity using multiple regression analysis. These two formations primarily consist of three
lithologies: limestone, sandstone, and shale. Before the model development, data analysis on the selected data was applied to figure
the most influential parameter(s) in determining the shear wave velocity. The results of the developed models are then compared with
the previous models in the literature.

The results showed that the multiple regression analysis technique is a powerful technique in determining shear wave velocity with
high-performance capacity. The correlation coefficient (R?) and the root mean square error (RMSE) were 0.84 and 0.092 for
limestone, 0.84 and 0.0972 for sandstone, and 0.86 and 0.0796 for shale respectively. Furthermore, the performance of the developed
models is well matched to the actual shear wave data rather than the Castagna correlations. The findings of this study are effective in
determining shear wave velocity for future applications related to reservoir geomechanics without needing costly well-log or core
measurements.
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1- Introduction
L . effectively assess the stability of rock formations and their
Determining shear wave and compressional wave resnonge to stress and deformation, thereby enabling the
velocities is crucial in constructing the mechanical earth prediction and mitigation of potential geomechanical
model (MEM) for the field of interest, as these cpajlenges, such as wellbore stability, sand production,
measurements are crucial for determining the elastic 514 induced seismicity [5]. Shear wave data can aid in
features of rocks. _A_nalyzmg the wellborg mstabl_llty designing mud programs, casing plans, and wellbore
problems and predicting the sand production requires  giapility analysis, ensuring the appropriate selection of
knowledge of the elastic rock properties [1]. Drilling and  qrjjling parameters and mitigating drilling risks. Shear
wellbore stability hazards can be mitigated by using \yaye velocity (Vs) is a crucial parameter in petrophysical
optimum mud weights based on the elastic and ,ck evaluation, as it can be used to estimate the rock's
mechanical rock properties that are combined with  achanical properties based on compressional-wave

formation pore pressure and in-siltu stresses [2]. Suc'h velocity and bulk density [6]. However, shear sonic data
elastic rock properties are Young's modulus, Poisson's s often omitted during well logging for cost and time-
ratio, the shear modulus, the rock compressibility factor, saving purposes.

and Biot's coefficient. Thus, shear and compressional Empirical correlations have been developed in the
wave velocities play a pivotal role in characterizing the iterature to determine the shear wave velocity of rocks
mechanical properties and behavior of subsurface sing different techniques such as multiple regression
formations, providing valuable insights into the stiffness, analysis and neural network methods. This development

elasticity, and shear wave transmission capabilities of s 1o overcome the lack of shear wave data for any field of
rocks [3-4]. By analyzing the shear wave velocity, we can
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interest. The comprehensive equation was developed
using statistical techniques tailored to carbonate rocks [7].
Naji et al. [8] utilized an artificial neural network to
predict shear wave velocity for directional oil wells in
Irag's Faugi oilfield. They developed a high-performance
mathematical model using 1922 data points to determine
the shear wave velocities. Bashara and Hadi [9] used
artificial neural networks (ANNS) to fill the gaps in shear
wave data in the southern and northern domes of the
Rumaila oilfield. The model's efficacy was measured via
calibration, revealing critical elements like depth, bulk
density, and compressional velocity. This method offers a
cost-effective alternative to the costly rock tests and DTs
measurements.

Shear and compressional wave datasets are typically
absent or insufficient in any interesting field, especially at
shallow depths [10]. Shear wave data is also required for
making credible computations [11-12]. Elastic rock
mechanics properties such as Young’s modulus, Poisson’s
ratio, Biot's coefficient, shear modulus, and rock
compressibility factor can be calculated using sonic
waves and density as key parameters [13]. Compressional
and shear wave velocities are the most crucial factors in
determining the mechanical properties of rocks [14]. The
high cost of coring operations often limits their use in oil
and gas field wells, making it difficult for researchers to
access crucial data. To overcome this challenge,
numerous empirical correlations have been developed
based on petrophysical survey data [15]. Assessing shear
wave velocity (Vs) is a crucial element in designing
drilling operations. Reservoir geomechanics plays a vital
role in drilling engineering, as it provides comprehensive
insights into the mechanical behavior of rocks under
subsurface stress and forecasts their potential movement
[16]. Rock mechanics properties are better determined
using shear wave logs than from direct core
measurements due to limitations in core sample
availability, time, and expenditures [17].

This study aims to develop new models for estimating
shear wave velocity within three distinct sedimentary rock
formations: limestone, sandstone, and shale (Tanuma and
Zubair formations) within the production section of the
East Baghdad oilfield. The application of multiple
regression analysis techniques and comparing the results
with Castagna correlations were also performed in this
study.

1.1. Area of study

East Baghdad oilfield (EB oilfield) constitutes one of
the most important large fields in Irag. It is about 120
kilometers by 10 kilometers and is extended northwest-
southeast, with its major component in northern Baghdad.
The field is composed of several formations, including
three major formations: Tanuma, Khasib, and Zubair.
Based on the final well report, oil and gas production
commenced from these three formations in January 1980.
The discovery of this field dates back to 1974 when the
Irag National Oil Company (INOC) identified its presence

98

in the Al-Swairah area (Southeast) extending up to AL-
Nibayia (northwest) [18], as depicted in Fig. 1.
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1.2. Geology of field study

East Baghdad oilfield is located in the fore deep
geological province in northern Mesopotamia. The
generalized stratigraphy of the Cretaceous to Tertiary, as
defined by the Iragi National Oil Company (INOC),
comprises three lithological subdivisions:

Cretaceous: mostly limestone with dolomite,
sandstone with shale, marl, and evaporite;

e Paleocene to Oligocene: limestone, marl, and
evaporite;
e Miocene to Pleistocene: sandstone with shale,

limestone, and evaporite.
Cretaceous limestone and sandstone reservoirs are the
most prolific oil interval in Irag and western Iran. In
southern and central Irag, the Cretaceous shows a cyclic
pattern of sedimentation characterized by an alternation of
porous permeable limestone or sandstone reservoirs, and
impermeable intra-shale or limestone cap rocks. Thick
marly limestone, marl, and shale with good source rock
potential were deposited in eastern Iragq and western Iran
during the early to center Cretaceous [19]. Fig. 2 shows
the stratigraphic column of East Baghdad oilfield which
extends from Ingana to Adaiyah formation. According to
Al-Ameri and AlObaydi [20], geological deposits
spanning from the Jurassic to the Pliocene periods consist
of a variety of rocks, including carbonate shale, anhydrite,
marl, sandstone, and siltstone.
2- Methodology
Multiple regression analysis is presented in this study to
develop a new correlation for forecasting shear wave
velocities based on conventional well log data in the East
Baghdad oilfield. Tanuma and Zubair formations are two
of the most notable reservoirs in the East Baghdad
oilfield. The results will be then compared with the
empirical equations developed by Castagna although
regression can also be applied to experimentally acquired
variables; it is most commonly used for naturally
occurring variables (parameters) [20].
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Statistically speaking, multiple regression analysis is
used when numerous independent variables are used to
predict a single dependent variable. It has widespread
application, particularly in scientific study and statistical
analysis. Criteria for choosing the independent variables
in a multiple regression model have been established in
prior research. Each new area or field may, however,
require a different collection of independent variables and
a separate prediction equation. This emphasizes the
significance of giving multiple regression analysis due
consideration and tailoring it to specific settings. Better
predictions can be made in a certain area or discipline by
refining the regression model through the selection of
relevant independent variables and the creation of
targeted prediction equations.

correlations between rocks' mechanical features and other
factors. Several researchers, including Castagna [22],
Eskandari [23], Brocher [24], Ameen [11], and Al-Kattan
[7], have produced good empirical correlations for
predicting shear wave velocities. Factual forecasts are
only as good as the quantity and ease of available data
allow for. Another potential gain is using these forecasts
in long-term strategic planning.

Developing empirical correlations between Vs and other
geophysical parameters is a typical method; for example,
the Castagna equations [22] give such empirical
relationships. Sandstone, limestone, shale, and dolomite
are only a few examples of the types of rocks for which
there are established relationships. Shear wave velocity
(Vs) in various rocks such as shale, limestone, and
sandstone can be estimated using the Castagna
correlation, which is an empirical equation. The
connection between the two velocities, Vs and Vp, is
established via the correlation. Vs and Vp are input
parameters in the equation developed by Castagna [22], in
kilometers per second. The correlation equation provides
different constants for different types of rocks, enabling
more precise predictions to be made for sandstone,
limestone, shale, and dolomite. Shale, limestone, and
sandstone shear wave velocities can be estimated from
compressional wave velocities using the Castagna
correlation. To evaluate the validity of the correlation, it
is necessary to compare the estimated values to measure
shear wave velocities. The correlation coefficient and
percentage of error are commonly used metrics to
evaluate the precision of the Castagna correlation in
estimating a shear wave velocity for different rock types.
The specific equations proposed by Castagna [22], for
estimating shear wave velocity (Vs) in different rock
types based on compressional wave are shown in Table 1.

Table 1. Castagna correlations to estimating shear wave
velocity (Vs) for different rock types [22]

Relationship of shear wave velocity Type Equation
(km/sec) Lithology  No.
Vs = —0.055 * Vp2 + 1.017 * Vp — 1.031 Limestone (1)
Vs = 0.862 % Vp — 1.172 Shale )
Vs = 0.804 « Vp — 0.856 Sandstone  (3)
Vs = 0.583 x Vp — 0.0776 Dolomite  (4)
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Fig. 2. Geological sequence of East Baghdad Oilfield [19]

3- Review of shear wave estimation

Knowing the shear wave velocity (Vs) is a key
parameter in determining the mechanical rock properties
and the stability of underground formations. In oil and gas
exploration, seismic data interpretation, and geotechnical
engineering, just to name a few fields, an accurate
assessment of Vs is crucial. This article summarises the
various techniques used to estimate shear wave velocity,
including  their advantages, disadvantages, and
geophysical applications.

Multiple regression analysis is one of the most
extensively used predictive techniques [21] for identifying

4- Results and discussion

This section presents the results of the developed
models for determining the shear wave velocities in three
sedimentary rocks which are limestone, sandstone, and
shale. The performance capacity of the presented models
was determined based on two criteria, determination
coefficient (R?) and root mean square error (RMSE). The
results are then compared with the Castagna correlations.

4.1. Model development

Well-log data has been prepared and verified for one of
the wells drilled in the East Baghdad oilfield, the southern
region of the same field (EBS). Where multiple regression
analysis methods were used to predict the shear wave
velocity for the area of study, including the Tanuma and
Zubair formations, which consist of limestone, shale, and
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sandstone. A general model development has been
established for each limestone, shale, and sandstone to
predict the shear wave velocity with the best correlation
coefficient, close to one, and the lowest root mean square
error RMSE for each rock formation, the equations have
one input parameter (Vp Km/sec) with the depth(m).

The obtained results from the relationship between the
predicted and the actual shear wave velocity showed a
realistic correlation coefficient close to one. Based on the

multiple regression analysis techniques applied to the
studied wellbore. This relationship was illustrated in
Figures 3 to 5, where equations 5, 6, and 7 were
developed for limestone, shale, and sandstone,
respectively, which are shown in Table 2.

Notably, the correlation coefficients for the developed
models were found to be 0.84, 0.86, and 0.84 for
limestone, shale, and sandstone, respectively.

Table 2. Models development to predict shear wave velocity for different lithology types

Relationship of shear wave velocity (km/sec) Type Lithology  Equation No.
Vs = —3.57 4+ 0.397 * Vp km/sec+ 0.0016 * TVD m Limestone (5)
Vs = 7.3597 + 0.6409 * Vp km/sec+ — 0.0033+*TVDm  Shale (6)

Vs = —0.75 + 0.00033 * TVD m + 0.47 * Vp km/sec Sandstone (7)

Where the transit time (DT, us/f) measured by the sonic
log is normally used to calculate the compressional wave
velocity (Vp, Km/sec):

Vp = 1% 10° « 2222+ 1000,Kmisec (8)

In Fig. 3 through Fig. 5, the expected and actual shear
wave velocities are displayed against each other. The
strong correlation coefficients (R?) obtained for
limestone, sandstone, and shale indicate that the selected
input parameters, pressure wave velocity, and formation
depth, are highly effective in predicting shear wave
velocities for these sedimentary rocks. Additionally, the
relatively low root mean square errors (RMSE) indicate
the accuracy and reliability of the developed models,
further supporting their practical utility.

The results of our research revealed promising
outcomes in predicting shear wave velocities for the three
sedimentary rocks using the multiple regression method.
The models achieved favorable correlation coefficients
(R%) and root mean square errors (RMSE) when
compared to the actual shear wave velocities .
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For limestone, the multiple regression model yielded a
correlation coefficient (R2) of 0.84, indicating a strong
linear relationship between the expected and actual
velocities of shear waves. The corresponding root mean
square error (RMSE) of 0.092 implies a relatively small
average difference between the predicted and actual shear
wave velocities for limestone, as shown in Fig. 4.

Similarly, the developed model for sandstone showed a
correlation coefficient (R?) of 0.84, suggesting a robust
association between the expected and actual velocities of
shear waves. The associated root mean square error
(RMSE) of 0.0972 indicates a reasonably low average
deviation between the predicted and measured values for
sandstone, as Fig. 5 shows.

Moreover, the model for shale exhibited a correlation
coefficient (R2) of 0.86, indicating a strong correlation
between the predicted and actual shear wave velocities.
The corresponding root mean square error (RMSE) of
0.0796 signifies a relatively low average difference
between the predicted and measured values for shale, as
shown in Fig. 4.

2400 2420 2440 2460 2480 2500

TVD, m Leverage, P<.0001

Fig. 3. Models Development for Estimating Shear Wave Velocity in Limestone: (a) Vs vs. Vp, (b) Vs vs. TVD, (c)
Actual Vs vs. Predicted Vs
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Fig. 5. Models Development for Estimating Shear Wave Velocity in Sandstone: (a) Vs vs. Vp, (b) Vs vs. TVD, (c)
Actual Vs vs. Predicted Vs

4.2. Comparison with castagna correlations actual shear wave velocities compared to the widely used
Castagna correlations. This outcome suggests the

An important finding of this research was that the potential superiority of the multiple regression approach
developed models showed better consistency with the in capturing the complexities and nuances of the
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relationships between the input parameters and shear
wave velocities in these sedimentary rocks. This study's
developed correlations can be considered a valuable tool
for estimating shear wave velocity based on
compressional wave velocity (Vp) in these formations
(limestone, shale, and sandstone). Multiple regression
models take into account additional factors and variables
that may not be adequately considered by the Castagna
correlations, resulting in improved accuracy.

The East Baghdad field data was used to build models,
and these are compared to Castagna's proposed empirical
equations. In the circumstances where castagna
correlations were utilized to estimate shear wave velocity
via Egs. 1, 2, and 3, Fig. 6 through Fig. 8 show a
comparison of the actual and predicted shear wave
velocities.

Compared to the Castagna correlations, the created
models perform better, suggesting that the multiple
regression approach takes into account more features and
variables, leading to a more precise prediction of shear
wave velocities. The traditional correlations may overlook
certain geological complexities or fail to capture the
specific characteristics of the analyzed formations.

30
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14 15 16 1.7 1.8 19 20 21 22 23 24 25 26 27 28 29 30
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— Smooth(New Correlation Limestone)

© Castagna Limestone
— Smooth(Castagna Limestone)

Fig. 6. Comparison of shear wave velocity in limestone
between developed and Castagna Correlation
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Fig. 7. Comparison of shear wave velocity in Shale
between developed and Castagna Correlation
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Fig. 8. Comparison of shear wave velocity in Sandstone
between developed and Castagna Correlation

5- Conclusions

This study presents new models to determine the shear
wave velocity based on conventional well logs in three
sedimentary rocks which are limestone, sandstone, and
shale. The findings of this research further strengthen the
potential applicability and accuracy of the developed
models in the East Baghdad oilfield.

An important finding of this research was that the
developed models showed a better consistency with the
actual shear wave velocities compared to the commonly
used Castagna correlations. This outcome suggests the
potential superiority of the multiple regression approach
in capturing the complexities and nuances of the
relationships between the input parameters and shear
wave velocities in these sedimentary rocks. Thus, the
multiple regression technique can be effectively adopted
to foresee shear wave velocity and use it to construct a
mechanical earth model (MEM), ensuring safe and
efficient drilling operations .

The findings of this study can be used for future good
planning in the East Baghdad oilfield that is related to
reservoir geomechanics without the need for performing
costly good log measurements or core lab measurements.
It can also be used in other oil fields with the highly
recommended calibration for increasing the accuracy of
determining the elastic rock properties.
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