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Abstract

Sand production is one of the major challenges in the oil and gas industry. This problem exists when sand is produced along with oil
and gas causing relevant damage to production equipment, thus decreasing in the productivity of wells. Therefore, a comprehensive
geomechanical analysis is necessary to mitigate sand production. This study aims to assess the potential of sand production across the
Nahr Umr Formation using the 1-D Mechanical Earth Model (MEM). Tech-log software coupled with well log and core data have
been employed to accurately determine the possible rock geomechanical parameters, in-situ stresses and pore pressure at which rock
failure might occur. Once MEM is complete, the Poro-elastic method is used to figure out the critical drawdown pressure (CDDP)
and accurately predict the sand production onset. Additionally, the effect of different well completion types on the value of the
CDDP was examined, and thus it was concluded that cased hole completion is the first line of defense against sand production, and
can also be considered as a strategy of sand control because it reduces the sand production potential and increases the operation
drawdown. Furthermore, to demonstrate the effectiveness and applicability of our method and technique, a case study was conducted
to illustrate the reliability of our method in predicting sand-producing intervals under different depletion rates and completion
scenarios. The finding showed that the depth 2527.7 m is a potential location for sand production as the CDDP reads a positive value
revealing a high potential for rock failure. Moreover, sensitivity analysis has been performed by considering different ranges of
Unconfined Compressive Strength (USC), Poisson ratio, minimum horizontal stress (Shmin), maximum horizontal stress (SHmax),
vertical stress, sand grain size, perforation diameter, perforation orientations, stress ratio, and hole deviation. These factors play an
essential role in optimal decisions related to real-time sand control techniques. Through the results, it is clear that as the UCS, Shmin,
and SHmax increase, the sand-free drawdown and depletion also increase, and vice versa. Also, results show that as the depletion rate
increases, the CDDP decreases in both cased and open hole conditions, revealing that the onset sanding likely occurs as the depletion
rate is elevated. Based on these findings, a necessary modification to the completion design has been made, ensuring sand-free
production from a clastic reservoir located in the southern area of Iraq.
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1- Introduction
o ) surrounding a perforation or open hole, which leads to a
_ One of the most significant challenges that negatively  |oss of mechanical integrity. Secondly, the hydrodynamic
impact the profitability of the petroleum industry is flow  grag force of fluid flow causes the separation of solid
assurance issues. These include problems such as sand particles and clumps from the degraded sandstones.
produgt_lon, hydrat_e formation, wax depOSlthﬂ, asphaltene Finally, the sand particles are transported to the surface
deposition, corrosion, and scale formation [1-7]. through the produced fluids. Sand particles can be
Sand production occurs when failed sand grains are  nroquced in three  different conditions; transient,
transported to the wellbore through reservoir fluids [8].  continuous, or catastrophic [10].
This phenomenon is generally considered undesirable in The majority of the models have been developed to
terms of operation due to its potential to prevent wellbore  hreqict the onset of sand production, i.e., the first stage of
access, lead to erosion of completion components, and  he sand production process or the condition for rock
disrupt the operation of downhole equipment. These  fajjyre and degradation initiation. Several sand models
problems can significantly impact well productivity [9].  have also been developed since 2000 that could be
The process of sand production, from the reservoir to the ilized to assess sand production severity, i.e., sanding
surface, is a f:om_plex one. A process can be divided into  amount and rate [8]. Some of these models are formulated
three stages: Firstly, the degradation of the rocks paseq on the sand production mechanisms identified
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during the second stage of sand production [11-13], while
others are formulated empirically based on laboratory or
field sand production data [8, 14]. Although the strategy
of combining the mechanical earth model with the critical
drawdown pressure was not expressly addressed in these
studies, all of them are connected in terms of predicting
the production of sand.

In this study, the calculations are derived from a well-
established sand prediction model developed by
Schlumberger. This model has undergone extensive
research, field trials, and has been successfully used in
numerous field cases [15, 16]. A workflow of leveraging
petrophysical raw data to generate a 1-D geomechanical
model and estimation of critical drawdown pressure is
proposed. The workflow serves as a guide to starting from
acquiring petrophysical data in the field to utilizing these
acquired data to estimate the critical drawdown pressure
(CDDP is the maximum difference between reservoir
pressure and minimum well bottom hole flowing pressure,
min that the formation can withstand without sand being
produced) required to first sand particle to mobilize.

Mechanism of Sand Production Failures: Sand
production in oil wells occurs when the equilibrium of
pressure surrounding the wellbore is disrupted, leading to
deformation and breakdown of the rock structure in the
formation. The process of rock failure includes both
mechanical failure and chemical failure [17]. The
occurrence of these rock failures might occur from
various well activities such as drilling, stimulation, and
other treatments or from changes in the reservoir due to
fluid production [18]. It is noted that there are two main
types of rock failure mechanisms; mechanical failures and
chemical failures.

1.1. Mechanism of mechanical failure

Sanding starts with the mechanical breakdown of rocks
at a perforation or wellbore. The creation of sand is
dependent on the failure of the formation, which is
governed by the in-situ stresses and the mechanical
characteristics of the rock. Unconsolidated formation
rocks are susceptible to deformation in the location of
perforations and wellbores as a result of localized stress
[19]. Excavation and completion have the potential to
cause damage to the wellbore surface. Hence, the
extraction of fluid from the reservoir and the frictional
force impacting the loose sediment of the reservoir cause
erosion of the sand surface. Following their separation
from the matrix, sand particles enter the wellbore [20].
Fig. 1 displays a graphical representation of mechanical
failure patterns [20].

The most prevalent types of mechanical
mechanisms in sand production include:

failure

A- Shear failure (compressive failure)

Shear failure, also known as compressive failure, occurs
when drilling or perforating operations create cavities,
causing a decline in radial effective stress to zero, while
vertical and tangential strains remain constant or increase.
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Shear failure can be a result of stress variations [18].
Additionally, plastic failure along the perforation tunnel
may reduce the hole size due to shear failure [21]. In
narrow sandstone formations, the extreme tangential
stress applied on the borehole wall can cause shear rock
collapse [22]. It is essential to understand that wellbore
stability is significantly affected by the mud weight below
the shear failure stress, which can generate a breakout in a
minimum horizontal stress, direction as shown in Fig. 2
[16].

Shear 4
Stress
3

Shear
Failure

O

_.m.ﬁ

Unstable

B

Pore Collapse
Failure

=

Cohesive o
I APy

=)
Failure (C=t,) /
> \
‘

Stable

Initial \
Conditions | s

Effective Normal
tress o

Tensile
Failure %,

g —

Tension + Compression

Fig. 1. Mechanical failure models [20]

7z

=N

4 ,/(

{ ‘\< />\
N / 7
=

¢jojo

Fig. 2. Sequence of shear failures [23]
B- Tensile failure

Sand production takes place when the effective stress in
the wellbore area exceeds the tensile strength of the
formation. Typically, tensile failure happens at both the
tip and the inner surface of the perforation tunnel [17].
Three principal factors contribute to this occurrence:
regional in-situ stress, pore pressure, and tensile rock
strength [18]. It is worth noting that the tensile failure
mechanism is a relatively uncommon event during
production in the majority of oil fields, usually associated
with high production flow rates [24].

C- Cohesion failure by erosion

Cohesion refers to the strength that exists among
formation grains, which affects rock consolidation and
cement quality [18]. Various locations can have potential
for cohesion failure, including perforation tunnels,
wellbore surfaces with open holes, hydraulic fracture
surfaces, shear planes, and boundary surfaces. Cohesion
is related to cement and capillary forces. Sand is produced
in formations when fluid drag overcomes formation
cohesion [17]. The sand production in poorly consolidated
rocks is significantly reduced when using open holes
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compared to perforated completion. This is due to the
flow rate at the open hole area being much lower,
approximately three orders of magnitude lower than the
preserved perforation surface. Erosion, on the other hand,
is related to tensile failure and requires a separate
examination due to its distinct particle structure [22]. The
major process of sand generation in unconsolidated
sandstone (oil sand) is cohesive failure as it has low
cohesive strength [21].

D- Pore collapse (volumetric failure)

This type of collapse occurs when the pressure of the
reservoir decreases. A decrease in pore pressure within
the reservoir can increase the effective stress, leading to
the collapse of pores [18, 25]. Pore collapse occurs due to
increased hydrostatic stress exerted on the granular rock.
Fractured or loose grains can impose pressure on pore
spaces, resulting in reduced porosity and compaction.
Additionally, the presence of intense localized shear
stresses at the point of contact between the grains might
lead to failure [24].

1.2. Mechanism of chemical failure

The strength of a rock depends on two important
components: the friction between grains and the cohesion
between adjacent grains. However, chemical interaction
can pose a significant threat by deteriorating the
cementation materials, depending upon the rock fluids'
content. The fluid may consist of acid, brine, or
freshwater [21]. When studying the formation of sanding
tendency, it is highly important to consider the following
observations:

If clay particles are present in the cementation
material, the formation should be considered as
potentially ~ susceptible to  water sensitivity.
Furthermore, the production of water will reduce the
integrity of the rock and increase the problems
associated with sand formation. Consequently, when
evaluating well performance and controlling well
output in unconsolidated sandstone reservoirs, it is
important to consider the effects of sand production
and velocity sensitivity. Both velocity and water
sensitivity are key elements that can affect well
productivity [17].

The use of hydrochloric acid (HCI) in completion
fluids can potentially pose a risk to the integrity of
the formation. This is particularly concerning when
the cementation material in the rock consists of
carbonate and the formation is exposed to acid, the
structure of the rock will deteriorate, ultimately
leading to the generation of sand. In Fig. 3, a solitary
calcite crystal effectively binds a large quantity of
detrital clastic grains together [14]. Only a few
carbonate particles contribute to the structural
arrangement of the sand grains. Consequently,
removing these limited cementing crystals through
acid treatment will cause a catastrophic failure,
resulting in the formation of sand.
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rocks due to acidic completion fluids [21]

2- Methodology

2.1. Sand production prediction workflow

Sand production is a common problem that occurs in the
clastic reservoirs found in the oilfields of Southern Iraq
[26, 27]. In the Nahr Umr formation, based on the
interpretation of logs and core data, this reservoir, with a
thickness of 225.5 m, has been divided into four main
zones (A, B, C, and D). These zones mainly consist of
sandstone, shale, and a low ratio of siltstone. A sand
management model has been developed to evaluate sand
production in this formation. This model aims to identify
the most critical and prone intervals, and determine the
downhole conditions (e.g., pressure, completion, etc.) that
increase the risk [28].

The main input requirements to perform sanding
analysis include the following: in-situ stress state,
mechanical properties, grain size diameter, drawdown
pressure, wellbore orientation, perforation diameter, and
orientation. It is important to consider the uncertainty in
the input parameters and their possible impact on CDDP.
Fig. 4 illustrates the workflow for building the sand
production analysis model.

2.2. Sand management model

The sand management model construction process
involves the following steps:
a) Collecting and gathering data, conducting an audit,

and preparing the data for analysis.

b) Developing a Mechanical Earth Model (MEM)
specifically tailored to the target well and calibrating
it using available data from mechanical core tests,
wireline formation pressure testing, and other
relevant sources. Ensuring a high degree of
confidence in incorporating validated elastic
properties and stress field properties into the sand
management workflow.
Calculating the critical drawdown pressure (CDDP)
along well for different depletion scenarios to
identify the weaker points and determine the optimal
perforation intervals. This will provide a depth-
indexed profile of CDDP that is crucial for inducing
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reservoir rock failure. In addition, it will provide an
assessment of the potential impact of depletion over
the field's lifespan.

Conducting detailed sensitivity analysis at selected
intervals to evaluate the influence of various
parameters, such as sand grain diameter, borehole
deviation and azimuth, perforation diameter and
orientation, and unconfined compressive strength
(UCS) on the CDDP conditions.

Exploring different scenarios to determine the most
suitable completion method for mitigating or
reducing the risk of sand production. In the case of
cased-hole completion, it is essential to define the
optimal perforation configuration in terms of
orientation, diameter, and other relevant factors.
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Fig. 4. Sanding analysis workflow
2.3. Building a 1D mechanical earth model

A Mechanical Earth Model (MEM) is a thorough
representation of the mechanical properties of the
reservoir and overburden formations, that includes
characteristics such as rock strength, elasticity, and the
conditions of in-situ stresses and pore pressure[29, 30].
The MEM serves as the foundation for other
geomechanical analyses, including wellbore stability
analysis, sanding prediction evaluation, hydraulic fracture
design, and more. In this study, the MEM has been
constructed using Tech-Log 2018 software. Once the
MEM has undergone rigorous validation, the model can
be used to identify geomechanical problems during
drilling, completion, and production [31, 32]. It also aids
in devising contingency plans for the planned well by
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conducting a sand management analysis along well
trajectory and perforations[30, 33]. Once the initial
geomechanical model is constructed, it is validated and
verified against drilling experience and borehole quality
from well logs at various formation intervals of different
study wells throughout the field. The final geomechanical
model, along with the initial reservoir pressure, and rock
strength profile are used for the sanding evaluation [34].
Fig. 5 illustrates the outputs of 1D Geomechanical
Modelling that will be utilized as inputs to build the
sanding model.
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Fig. 5. Outputs of the 1D geomechanical model
2.4. Critical drawdown pressure (CDDP)

CDDP refers to the maximum difference between
reservoir pressure and minimum well bottom hole flowing
pressure (PHFP) required to prevent the production of
solids from a sand reservoir [33]. To determine CDDP,
we rely on the outputs of 1-D MEM at various depletion
rates. These rates represent the time dependency based on
the depletion rate of a chosen field/formation [10, 35].
The formulation suggested by Willson et al. is commonly
utilized to calculate the onset of sand production. This
aspect of the study focuses solely on the sand production
caused by the failure of the formation rock due to shear
forces during production.

It is important to note that such shear failure can have a
catastrophic consequences [36]. The CDDP can be
calculated in psi as follows:

CDDP = ——(2P> — (3SHmax — Shmin — U) @)
Where A is a poro-elastic constant and represents by:
_ a(1-2PR)

A== 2

a is Biot’s constant given by:
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C
a=1-=
Cp

©)

Where Pp is pore pressure, SHmax is maximum
horizontal stress, and Shmin is minimum horizontal
stress. In Eq. 1, the formation compressive strength (U)
doesn’t have its value directly, so we will calculate it
from the thick wall cylinder test (TWC), which represents
a fundamental strength measure for unsupported
boreholes and perforations. Calculation of the formation
compressive strength (U) is based on the TWC, which is
calculated using the UCS from the Mechanical Earth
Model.

TWOC is calculating based on UCS as follows:

TWC = 9.1 UCS°$? 4)
The formation compressive strength (U) can be
determined from the thick wall cylinder model (TWC) in
pounds per square inch (psi):
For open-hole completion;

U=25*TWC (5)
And for cased and perforated completion;

U=3.1xTWC (6)

3- Results and discussion

3.1. Estimating critical drawdown pressure (CDDP)

The mechanical earth model illustrated in Fig. 6 has
been constructed for the purpose of this study. This model
also includes the CDDP profile, which showcases the
depletion rates in both cased and open hole completions.
As shown in Fig. 6, the CDDP profile varies across
different reservoir zones due to variations in the
mechanical properties, surrounding stresses, and reservoir
conditions. It is worth noting that there are several
intervals where the CDDP indicates the presence of sand
production, regardless of the applied CDDP. This finding
is crucial in identifying sand-prone zones that require
further isolation.

In the scenario of 0% depletion at zone B, the maximum
drawdown pressure that can be applied for sand-free
production from this reservoir is 3765 psi. On the other
hand, in the 35% depletion scenario, the maximum
drawdown pressure for sand-free production is 2446 psi.
Fig. 6 clearly demonstrates that the use of casing
enhances CDDP values, thereby reducing sand
production. However, it is worth noting that despite the
presence of casing, the problem persists at certain
intervals. Therefore, it is important to address and control
this problem at these depths using single depth analysis.

3.2. Single depth analysis (sand-face envelope)

In a single depth analysis plot (Fig. 7), the computation
of BHFP is conducted as a function of the depletion rate,
ranging from 0-100%. The green-shaded zone on the plot
indicates the range of bottom hole flow pressures where
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sanding is not expected to occur, while the red-shaded
zone signifies the potential or sand production. It is worth
to mention that in Fig. 7, the Left Y-axis represents
BHFP, while the right Y-axis allows for the determination
of the critical bottom hole flowing pressure (CBHFP) and
the X-axis represents the reservoir pressure. Well-X,
which has been selected to be evaluated in our study, is
completed with a cased hole. Therefore, it is crucial to
analyze the perforation depths of this well to identify any
intervals that may be prone to sand problems and
recommend an appropriate solution. For this well, the
perforated intervals range from 2519 to 2531 m and from
2540 to 2546 m.

Based on the low CDDP and UCS, there is a likelihood
of sand problems occurring within the current perforated
intervals of Well-X, particularly when the depletion rate
is zero. These intervals are located in zone B within the
studied area. This zone exhibits high oil saturation and is
relatively free of shale, resulting in favorable
petrophysical properties. By examining the CDDP
depletion rates at various levels, (0%, 15%, 25%, and
35%), it has been determined that the optimal depth of the
sand problem within these intervals is 2527.7 m.

As shown in Fig. 7 and Table 1, the selected depth in
Well-X is 2527.7 m. This indicates the potential for sand
production under certain conditions. The maximum
CDDP in this well is 2400 psi. The conditions were
obtained based on perforation diameter of 0.3 in, and a
direction of 0° while the adopted maximum stress
direction was 50°. To establish a sand-free production
zone, it is necessary to optimize these parameters through
sensitivity analysis of the multiple influencing factors.
Once the reservoir pressure reaches 2452 psi, any further
pressure reduction poses a significant risk of sanding.
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Fig. 7. CDDP prediction for Well-X at 2527.7 meters

Table 1. Limits of CBHFP for producing from depth of
2527.2m for Well-X

Initial Conditions Production Limits

Well  Perforation Without sand
Name — Depth(m) — p,  CBHFP  Ps  CBHFP

(psi) (psi)  (psi) (psi)

X 2527.7 3784 1382 2452 2445

As shown in Fig. 7, it is evident that CDDP decreases as
it moves towards the upper left. In other words, the
CBHFP increases as the reservoir pressure depletes
during this process. Consequently, it is not possible for
hydrocarbon to be produced from the free sand zone
below the CBHFP values under both initial and
production conditions, considering the reservoir pressure.

However, it is important to note that all the remaining
intervals do not exhibit a decrease in CDDP and can be
produced without the risk of sand production. This is due
to the fact that these intervals were drilled in areas with
formations that withstand high stresses. To understand

this concept, we can select any depth within the
perforated intervals (2519 to 2531 m) and (2540 to 2546
m). for the purpose of analysis, the 2544 m depth has
been chosen to be visually illustrated in Fig. 8.

3.3. Influence of well completion types on CDDP

As mentioned above, casing plays an essential role in
improving CDDP values, thereby decreasing sand
production, as shown in Fig. 6. In the study conducted by
Vimolsubsin et al., the effects of critical depletion
pressure on well completion, time-dependent rock matrix
stress, and pore pressure were examined.

To demonstrate the effects of completion methods,
points in zone B with high oil saturation have been
selected to focus on this purpose. These points are located
within current perforation areas. Fig. 9 and Table 2 show
further supporting to the notion that the casing improves
CDDP values.
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Table 2. Show influence of well completion types on CDDP
Completion Type Cased Open
Depletion Rate Depth 2519.93m 2522.07m 2545.232m 2519.3m 2522.07m 2545.232m
0% 3779.374 3780.527 3816.509 2663.299 2280.667 1398.415
15% 3212.468 3213.448 3244.032 2261.882 1881.191 1008.083
25% 2834.53 2835.396 2862.381 1994.271 1614.874 747.8615
35% 2456.593 2457.343 2480.73 1726.661 1348.557 487.6398
45% 2078.656 2079.29 2099.08 1459.05 1082.24 227.4182

3.4. Single depth sensitivity analysis

A single depth sensitivity analysis was conducted to
examine the variations of CDDP and sand-free production
with depletion at specific depths [33]. This analysis also
aimed to forecast sanding over a wide depth range,
considering the uncertainty in adopted 1D MEM
parameters. When reservoir pressure drops, the stress
within the reservoir may change, which in turn affects the
sand-free drawdown. To optimize (or mitigate) sand
production, a sensitivity analysis was performed for a
depth 2527.7, as shown in Fig. 7. The parameters used in
this analysis were selected based on their effect on open
completion or lack therefrom in cased completion,
particularly when CDDP is low at zero depleted rate.

The analysis had been done according to difference
ranges of UCS, PR, Shmin, SHmax, SV, sand grain size,
perforation diameter, perforation orientation, stress ratio,
and hole deviation.

For open hole completion, Analysis had been done
according to the difference ranges of UCS, PR, Shmin,
SHmax, SV, sand grain size, stress change ratio and hole
deviation. Fig. 10 shows the characteristics of the sand-
free envelope plot using CPHFP for wvarious rock
strengths from 8 MPa to 14 MPa at a depth of 2527.7 m.
It is clear that as the UCS increases, the sand-
free drawdown and depletion also increases, and vice
versa. When the rock strength increases, there is less risk
of sand production because it becomes harder to fail.
Therefore, accurately determining and measuring UCS is
of high importance.

The selectivity of sand production in well-X at a depth
of 2527.7 meters with multiple PR values (0.1 — 0.5) is
shown in Fig. 11. A higher PR indicates a greater
likelihood of fluid-filled sand formation because it is a
sign of rock failure and deformation.
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Sensitivity analysis at 2527.7 m
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Fig. 11. Displays the results of a sensitivity analysis on sand production in Well-X, using a range of poisson's ratios

The sensitivity of sand production conditions to the well
inclination for well-X is shown in Fig. 12. Sand
production is heavily influenced by the well inclination.
The study examines scenarios of a vertical well (0
degrees), an inclined well (30 and 60 degrees), and a
horizontal well (90 deg). Both vertical and inclined wells

may produce sand at a depth of 2527.7 m, with a
maximum CDDP of 2400 psi for vertical wells and 3450
psi for inclined 30-degree wells. More favorable CDDP
conditions for sand-free production are observed in
horizontal and inclined 60-degree wells.
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Fig. 12. Sensitivity of sand production conditions to well inclination for Well-X

As a general rule, larger sand grain diameter results in
less sand production. In this study, a base case of 160 um
is used. However, a broader range of grain diameters
encountered in the reservoir is also considered, including
diameters of 120, 140, 180, 200 um and 350 um. Faster
sand production is expected as the grain size diameter
decreases. Fig. 13 illustrates the effect of different ranges
of sand grain diameter at depth a 2527.7 m in Well-X.

Overlapping the subsurface layers, lack of field data
measurements, and the error associated with the
instrument used to record the bulk density during well
logging measurements are the main reasons for
overburden stress (Sv) uncertainty. Increasing this
parameter leads to increased sand production problems
according to the high possibility of formation failure. In
other words, if Sv is high, the possibility of producing

free sand at low CBHFP is low. Fig. 14 illustrates the
impact of Sv on the sand production problem.

Fig. 15 and Fig. 16 present the sensitivity of the sanding
problem at a depth of 2527.7 m in Well-X to various
ranges of Sumax (3000 — 7000 psi) and Spmin (3000 — 6000
psi) respectively. By increasing these two parameters, the
sanding problem can be minimized, resulting in a larger
green zone with lower CBHFP. Higher values of these
parameters allow for greater flexibility in perforating in
all directions, without worrying about cavity failure
during production. Additionally, it allows to produce
fluids with free sand at lower values of CDDP.

Analyses the influence of the minimum and maximum
horizontal stresses on the sand production prediction, as
seen in Fig. 17. This ratio is defined as the value of the
maximum horizontal stresses over minimal horizontal
stresses. Therefore, when this ratio increases, the range of
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CDDP will increase as a result of the increase in we change the stress ratio in cased perforated wellbore
maximum horizontal stress. In this well, the 0.5 stress completion.
ratio value was used. There is no change in CDDP when

Sensitivity analysis at 2527.7 m
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Fig. 13. Sensitivity analysis of depth 2527.7 m in Well-X to different sand grain diameter ranges
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Fig. 14. Sensitivity analysis of depth 2527.7 m in Well-X to different vertical stress ranges
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Fig. 15. Sensitivity analysis of depth 2527.7 m in Well-X to different Spmin ranges
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Sensitivity analysis at 2527.7 m
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16. Sensitivity analysis of sand production for a series of maximum horizontal
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Fig. 17. Sensitivity analysis of depth 2527.7 m in Well-X to different stress ratio ranges

The effect of different parameters has been studied in
the case of open completion of the well, which has a
significant impact on the value of the critical drawdown,
so we will move on to studying some important
parameters in the closed completion process.

Large perforation diameter leads to the high possibility
of tunnel perforation failure during production. Increasing
perforation diameter causes the high possibility of sand
production so decreasing in the green zone. Fig. 18
illustrates Sensitivity analysis to different perforation
diameter ranges.
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Fig. 18. Sensitivity analysis to different perforation diameter ranges
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In some cases, the direction of perforation relative to
stress directions can be a contributing factor in sand
production. The studied interval shows a continuous
normal faulting regime (SV>Shmax>Shmin). The maximum
horizontal stress in the field is around N50°E as
determined from the available image logs. The influence
of perforation orientations on the CBHFP in this well is

significant as illustrated in Fig. 19. The closer the
perforating direction is to the minimum horizontal stress
observed further from the wellbore, the more likely it is
that critical drawdown pressure will increase, leading to
increased reservoir drawdown and decreased sand
production risk.
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Fig. 19. Sensitivity analysis of depth 2527.7 m in Well-X to different perforation orientation ranges

4- Conclusion

A sand production prediction study was carried out for
Nahr Umr formation in the South of Irag to evaluate
sanding potential zones and determine the optimal
conditions for sand-free production. The utilization of a
one-dimensional mechanical earth model (MEM) in
conjunction with Critical Drawdown Pressure (CDDP) is
essential for mitigating equipment damage and production
constraints that can result from sand production. 1D
Geomechanical Modeling outputs that are used as inputs
for the sanding model. The influence of well completion
types on CDDP has been studied, the results show that
casing can improve CDDP values and therefore decreases
sand production. The sand-face envelope determined that
the optimal depth of the sand problem within the intervals
is 2527.7 m Indicating a sand can be produced at certain
conditions. The maximum CDDP in this well is 2400 psi;
furthermore, any drawdown will result in a sand risk
when the reservoir pressure reaches 2452 psi. Analysis of
sensitivity had been conducted according to difference
ranges of UCS, PR, Shmin, Shmax, SV, sand grain size,
perforation diameter, perforation orientation, stress ratio,
and hole deviation. Sensitivity analysis aids in
determining the optimal perforation diameter and
orientation to minimize sanding problems. Poisson ratio
and unconfined compressive strength support the
indications of elastic and strength rock properties that are
indicated on weak and strong zones (As the rock strength
increases, there is less risk of sand production because it
becomes harder to fail; also, higher PR is a sign of rock
failure and deformation).
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Nomenclatures

Symbols  Description and unit

BHFP Bottom hole flowing pressure (psi)
CBHFP Critical bottom hole flowing pressure (psi)
CDDP Critical drawdown pressure (psi)

Co Cohesion strength (psi)

FANG Fraction angle (deg®)

GR Gamma ray (GAPI)

MD Measured depth (m)

Pnorm Normal pore pressure (psi)

Pp Pore pressure (psi)

PR Poisson ration (Dimensionless)

SHmax Maximum horizontal stress (psi)

Shmin Minimum horizontal stress (psi)

Sv Vertical stress (psi)

SwW Water Saturation (%)

To Tensile strength (psi)

TVD True vertical depth (m)

U Formation strength

UCs Unconfined compressive strength (Mpa)
o} Biot coefficient
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