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Abstract

An experimental and numerical study was carried out to investigate the heat transfer
by natural convection in a three dimensional annulus enclosure filled with porous
media (silica sand) between two inclined concentric cylinders with (and without)
annular fins attached to the inner cylinder under steady state condition. The
experiments were carried out for a range of modified Rayleigh number (0.2 <Ra'<11)
and extended to Ra =500 for numerical study and for annulus inclination angle of
(6 =0°, 30°, 60° and 90°). The numerical study was to give the governing equation
under assumptions that used Darcy law and Boussinesq’s approximation and then it
was solved numerically using finite difference approximation. It was found that the
average Nusselt number depends on (Ra’, Hf, & and Rr ). The results showed that the
increasing of the fin length increases the heat transfer rate for any fin pitch unless the
area of the inner cylinder exceeds that of the outer one; then the heat will be stored in
the porous media. A comparison was made between the results of the present work
and those of other researches for the case without fins and excellent agreement was
obtained.
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Introduction

In recent years, natural convection in
a cylindrical annulus has attracted
much attention in relation to solar
collectors, thermal storage systems and
spent nuclear fuel cooling. A review of
the works concerning this
configuration was presented by Kuehn
and Goldstein [l]. However, most of
them were for horizontal concentric
cylinders with infinite axial length. In
this case, a two-dimensional (2-D)
analysis is allowed because the
convective flow is confined to the
vertical plane and the flow pattern is
identical in each annular cross section.
On the other hand, a three dimensional
(3-D) treatment is unavoidable in the
horizontal case with the finite axial
length and the rigid axial boundary
surfaces and/or in the case when the
cylinders are inclined from the horizon,
because the viscous shearing force at
the end walls and/or the gravitational
force have an effect on the convection
toward the axial direction Fukuda [1].

In the 3-D numerical analysis, the
matrix to be dealt with is far larger
than that in the 2-D case, taking more
CPU time to obtain the solution.
Recently it has become feasible to treat
this problem due to improvements in
processing speed and memory capacity
of digital computers. Several numerical
works have been performed, most of
them for rectangular enclosures.
Numerical analysis has been performed
by Fukuda [1] on three dimensional
natural convection enclosed with
concentric inclined cylinders.
Governing equations were numerically
solved by means of over — relaxation
method for ranges of RaDa (a product
of Rayleigh number Ra and Darcy
number Da) from 1 to 1000 and an
angle of inclination of cylinders from
the horizon of 0 to /2. Results showed
that the local Nusselt number on the
inner cylinder wall has its maximum
value at bottom end, while Nusselt
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number on the outer cylinder wall has
its maximum value at top end.
However, the average Nusselt number
depends largely on only RaDa and is
hardly affected by the inclination.

Bogdan [2] presented experimental
and numerical work investigating the
effect of metallic porous materials,
inserted in a pipe, on the rate of heat
transfer. The pipe is subjected to a
constant and uniform heat flux. The
effects of porosity, porous material
diameter and thermal conductivity as
well as Reynolds number on the heat
transfer rate and pressure drop are
investigated. The results are compared
with the clear flow case where no
porous material was used. It is shown
that for an accurate simulation of heat
transfer when a porous insert is
employed its effective thermal
conductivity should be carefully
evaluated.

Ramon [3] numerically investigated
three-dimensional natural convection
of air in a cubical enclosure with a fin
on the hot wall for Rayleigh numbers
of 10°-10°. The fin, with a thickness of
1/10 of the cavity side, is placed
horizontally on the hot wall. The solid
to fluid thermal conductivity ratio (Ry)
and the fin width are varied. Because
the fin is shorter than the cavity side,
the cold flow sweeps the lower fin face
and the hot wall at the clearances
between the fin sides and the lateral
walls, where high vertical velocities
are reached. The fin inhibits the frontal
and lateral access of fluid to the upper
fin face, especially at low Rayleigh
numbers. Low values of Ry cause heat
transfer reductions. The contribution of
the fin faces increases at high R
causing heat transfer enhancements
above 20%, which exceed the ones
obtained in most two-dimensional
studies. In the range of Ra from 10° to
10°, maximum heat transfer rates are
found for dimensionless fin widths of
0.6 and 0.8 respectively. It is
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concluded that for 10° < Ra < 10° a fin
of partial width is more effective in
promoting heat transfer than a fin of
full width.

Experimental Study

Three outer cylinders of different
diameters were manufactured to vary
the radius ratio and to vary the fin
length; ten inner cylinders were
manufactured one without fins and the
others with different fin length(Hf
=3mm, 7mm and 11mm), radius ratios
of (Rr=(ri/r;) = 0.293, 0.364 and
0.435), number of fins (n=12, 23 and
45) and pitch length of (s = 19.2mm,
8.4mm and 3mm) to investigate the
effect of these parameters and the
effect of modified Rayleigh number by
the variation of the temperature
difference between the two concentric
cylinders by means of a variable
electric input power. Aluminum was
chosen because of its high thermal
conductivity and easy machinability.
The test section consists of a three
Aluminum outer cylinders of (100
mm), (82 mm) and (70 mm) outside
diameters, (4 mm) thick and (260mm)
long to which ten Aluminum inner
cylinders of (27mm) outside diameter,
(260 mm) long and (5 mm) thick. The
inner cylinder was heated by passing
an alternating current to a heater inside
the inner cylinder and the outer
cylinder was subjected to the
surrounding  temperature  (freezer)
where the minimum temperature was
270 K. The inner cylinder surface
temperatures were measured at Ssix
locations using thermocouples type (
K). The experimental apparatus is
shown diagrammatically in Fig. 1

Mathematical Model

The schematic drawing of the
geometry and the Cartesian coordinate
system employed in solving the
problem is shown in Fig. 2.
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Fig.1,  Schematic
Experimental Apparatus
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Fig. 2, (a) Geometry and coordinates
system and (b) Schematic Diagram of
Inner Cylinder with 8.4mm pitch

In order to model the incompressible
flow in the porous medium, the steady-
state equations of the Darcy flow
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model, namely, the mass, the
momentum  (Darcy), the energy
conservation laws and the Boussinesq's
approximation are employed. These
equations in vectorial notation are
given by Nield and Bejan [4] and fin
equation by Ramon [3].

Governing Equations

The conservation equations of mass,
momentum and energy in steady state
and the supplementary equation are
Fukuda [1]:

p=p,{L-pT-T,)} (1)
Where:

_1op 9
B= > aT 2

£ is the thermal coefficient of the
volume expansion; this constant is
evaluated at T, which is the
temperature at the inner surface of the
outer cylinder, p, is the density at T,
and p is the density at T, Fukuda [1].
This technique is called Boussinesq's
approximation.

Mass Conservation

ou ou ou
c U 100 O =0 (3)

or r r o¢ oz

Momentum Equations

The most common model used for
flow in the porous media is the Darcy
flow model. Darcy’s law states that the
volume average velocity through the
porous material is proportional with
the pressure gradient. In three
dimensional flows, the Darcy’s model
Wang [5] is:

Momentum Equation in Radial
Direction

urzﬁ[—@—pg CoS ¢ 0055} (4)
Ml Or

Momentum Equation in Angular
Direction

K| 10p .
u=—,/|—-=—7+,9 sing cosé} (5)
’ ﬂf|: r o
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Momentum Equation in Axial
Direction

u, :ﬁ{—a—p—p g siné} (6)
0z

Hy
Energy Equation

dpc,T) &
ot " or

+
ror or r’ o¢’
o2k T)

+
07° H

()

Where @ is viscous dissipation
function.

Fin Equation
Within the fin itself, the energy
equation is Ramon [3]:
or T 10T oT
—_—t—+——+—=
or r rogp oz
Following Aziz [6] a vector potential
¥ with its components:

Y=y, v, v.))

0 (8)

Defined by:
U=g,4 VXY )
oU
Vzl//, = i% __—¢ (10)
R op oL
o ou
Viy, =—r =z 11
" 82 oR -

vy, -1 ory,) 100,
R OR R 0¢

Non Dimensional Variables

The characteristic length for the
present study is r, Fukuda [1] to
convert the governing equations to the
dimensionless form, the dimensionless
magnitudes must be defined as follow:
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r 7 u l
R=— Z=— U, = !
r, I an
u, | |
¢ u
u,=—, U, = z
A gt At
p KI

QZ(T_Tz)/(Tl_Tz) P=—r——
' Uit Hi Ty

Ra"=g SK (T,-T,) (r,—1) ey v

S
E“r‘t Hf

Substitute these dimensionless
magnitudes in the governing equations.
Alternative expressions of Eq. (3)

Ra” 1 (COS¢ coséae—sinéaer
-r,) oz

(r, R
Py, Py, 12,
072> 0R* R? 0¢
20w v 10,
R 94 R* ROR
17)
-Ra’ 1 cos & lcos ¢%+sin ¢% =
(r,-r) R "d¢ oR
Oy, 1oy, 10y, o,
OR®> R 0R R*0¢* 0z°
(18)

may be written in terms of The vector potential equation was
v, v, and y, as: obtained in the dimensionless form as
2 oR v,
1oy, v, vy - v 1 kv
U=l-—-"""F% (13) " 3R® R’ OR
R op 0Z
20y, 1d',
oAb blAs2
u, - oy, _ oy, 14) ROR R*0¢
0oZ OR )
_a Ve zay/Z
L=
1(a oy, 0Z° RoZ
U, :E{é_R(R v, )- 5 } (15) (19)
0%y, o 0’
Taking curl of momentum equations Vi, - vy 0y 10,
to eliminate pressure terms, the a7t oRY R? 0¢°
momentum equations will be:
20w v 10y
2 2
Ra” I(lsinéaa+sin¢ coséaaj: R0¢ g* ROR
(r,—r)\R ¢ oz (20)
0y, 10Ry) 20y, 1, .3y, 1oy,
ORZE R: 0R ROR RO "'TT9R? R oR
0y, 20y, 1 0%, 3%,
07° RdZ R°0¢° 02°
(16) (21)
And the energy equation will be:
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R R o
+[V/¢ oy, 10%]59

R R R 0¢ oz
| 0°0 1060 1 0’6 0°0
=t e ntar A T e
r,'0R? RGR R?04® oz

1oy, 0vy)00 1(dy, dy,)d0
R 0p OZ dZ R

]

(22)
And the fin equation will be:

o8 6 100 50
—t—t——t+—= (23)
oR R Rop 0L
Dimensionless Hydraulic Boundary
Conditions

For the vector potential field, the
boundary conditions are given as:

10

—— Ry, )=y, =y, =0 atR=R,1

R@R( '//r) V=V, 1
v,

== :O at :O,

V=g Ve 9=0 7

(//r:%:a%:O atZ=0, L

oz
And for the fin, the boundary
conditions are given as:

10 oy, oy
29 Ry =Y 0V
R v o6 oz

On the fin faces which were located
on the following planes
At R=R; for ¢=0 =z (fin
base)
Asin Fig.3
At r=n+H; for ¢=07 (fin
tip)

At S, and S, for any r and ¢

a6, w0
(—k]mﬁ] fin = (kg 55) medium

t b, _ AR, _ o

oz RIR a0

[

(~k_fin 08/0) fin = ~(koj7,96/30) medizan

(& g]fin = ~(kyyy.80/57) medium I 1
y

Fig. 3, Fin boundary conditions
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Dimensionless Thermal Boundary
Conditions
For the temperature field, the

dimensionless  thermal  boundary
conditions are:
0=1 aaR=R =r/r,
0=0 atR=R, =1
29 _g at =0, 7
o¢
9 _ 0 atZ=0, L
oz
at R=H,

o0 00

K —— | =k, —]
fin a R fin eff . a I:z|med|um
atS, at any Rand ¢

at S, at any Rand ¢

040
finaZ
ag=0, r and any R

00

fin = " Meff. ‘medium
0Z

-k

040
fin a ¢
Where:

00

fin = T Reff. ‘medium
09

-k

ker. =the effective thermal conductivity
of the medium (W/mK).

k, =(0—¢) k, +¢ Kk, (24)

Computational Technique

Equations (16, 17, 18, 22 and 23)
were transformed into the finite
difference equations, where the upwind
differential method in the left hand side
of the energy Eqg. (22) and the centered
— space differential method for the
other terms were used, and solved by
using (SOR) method Wang [5]. A
computer program was built using
Fortran 90 language to meet the
requirements of the problem.

The value of the vector potential y

will be calculated at each node, in
which the value of vector potential is
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unknown, the other node will appear in
the right hand side of each equation.
As an initial value of iteration, zero is
chosen for the vector potential field,
while a conduction solution is adopted
for temperature field. The index (n)
was used to represent the nth -
approximation of temperature denoted
by 6" and substituted into the
approximated equations, which were
solved to obtain the nth -
approximation of vector potential  ,

then  was substituted into Eq. (22) to

obtain @"™*. A similar procedure is
repeated  until  the  prescribed
convergence  criterion given by
inequality:

6n+1 _ en
9”

Max < 10°®

was established Fukuda [1].

As the steps of iteration increase with

Ra’, a solution obtained for lower Ra"
was used as an initial value of
computation for higher Ra” (double
iteration method).
It is clear that as the grid becomes
finer, the convergence of the results
becomes better. The number of grid
points used was 21 grid points in the R
— direction, 31 in the ¢ — direction and
301 in the Z — direction which seems
reasonable and will be used in the
present study. Fig. 4 illustrate the
numerical grid in two planes.

(a) Horizontal (R — ¢) Plane

Available online at: www.iasj.net
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(b) Vertical (R — Z) Plane
Fig. 4, Numerical Grid

Calculation of Local and Average
Nusselt Number

Nusselt number is the dimensionless
parameter indicative of the rate of
energy convection from a surface and
can be obtained as follows Fukuda

[1]:
NU = q(rz - rl) (25)
k(T1 _Tz)
As the local heat flux on the wall is
given by:

0|——kﬂ (26)
or

The local Nusselt number Nu; and

Nu, on the inner and the outer

cylinders are written in the form

Fukuda [1]:

00
Nu, =—(1-R,) | < 27
uy = 1)(5FJR_R1 (27)
00
Nu, =—(1-R,) | < 28
u, =—( 1)[6RJM (28)

The average Nusselt number Nui,
and Nugy on the inner and the outer
cylinders are defined as:

ey
Nu;, = -(1- Rl)ZJO ! (5_RJRRd¢ N

(29)

1 (Le( 00
Nuout = _(1_ Rl)ZJ.O J.O (G_RJ d¢ dz
R=1

(30)
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Results and Discussion

Figs. 5 to 8 show the variation of the
average Nusselt number on the hot
cylinder with Ra” for different radius
ratios, without and with fins
respectively. These figures show that
for any radius ratio, the average Nu is
generally constant for low values of
Ra’ then as Ra" reached nearly 100, Nu
increased with increasing Ra". These
values increased as Rr decreased due to
the enlarge of the distance between the
two cylinders. For low values of Ra’,
the maximum values of Nu was for
maximum Rr until Ra" reached nearly
100, then the situation would inverse
and the maximum values of Nu would
be for minimum Rr which improved
that for low values of Ra  the heat
transferred by conduction and as Ra’
increased the convection heat transfer
and that would be the dominant. These
figures show as Ra” exceeds 100, as Hs
increases Nu decreases and decreasing
the pitch (by increasing fin numbers)
causes Nu to decrease.

Fig. 9 illustrates that the values of
the average Nusselt number was low
for high radius ratio; then they
increased with high intensity as radius
ratio decreased. When the annulus gap
decreased, the resistance to the
circulation motion of the convection
cells increased and this lead to slower
replacement of the hot air adjacent to
the inner surface by the cold air
adjacent to the outer surface and these
resulted in an increase in the average
temperature of the annulus inner
surface and consequently in a decrease
in the rate of heat transfer. It is clear
that the curves of the different radius
ratios converge to each others as Ra”
decreases; this means that the effect of
radius ratio on the rate of heat transfer
decreases with decreasing Ra. This
can be attributed to that as Ra

12 IJCPE Vol.12 No.4 (December 2011)

decreases the heat convection becomes
insignificant, or in other words, heat
conduction becomes the dominant heat
transfer in the fluid layer.

Convective heat transfer rate is
controlled by three parameters (h, A
and AT), according to
Q=h Ain(Tl —T2)=h0 Aout(Tl _Tz)
For the same modified Rayleigh
number (i.e. AT is constant),
dQ/Q=(dA/A)+(dh/h). If the increase
in the surface area is more than the
decrease in the heat transfer coefficient
(average Nu), the total heat transfer
rate will increase, or if the decrease in
the heat transfer coefficient is more
than the increase in the surface area,
the total heat transfer rate will decrease
Harith [7].

Fig. 10 indicates that there is a
reduction in the average Nusselt
number with increasing H¢ from 3mm
to 11mm. For the same value of Ra’,
reduction in the average Nusselt
number may be ranged between (18%
to 38 %).

Figs. 11 to 13 indicate that there is a
reduction in the average Nusselt
number with increasing the number of
fins from n=12(pitch=19.2mm) to
n=23(pitch=8.4 mm) and then to
n=45(pitch=3mm) with the increasing
of inclination angle, radius ratio and
fin length.

The distribution of the local Nusselt
number are shown in Fig. 14.The peak
of the local Nu on the outer cylinder
wall generally appeared at a position of
Z=L (at the top) and ¢ with some
deviation from m. while for the inner
cylinder the peak appeared at a
position of Z=0 (bottom of the
cylinder).
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Fig. 13, Variation of average Nusselt number with H¢ and for Rr=0.135 and different
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Fig. 15 illustrate the relation between
the average Nusselt number and
modified Rayleigh  number for
different Rr and & for n=12 and
H=3mm. The average Nusselt number
was nearly constant because of the
predominance of conduction mode on
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heat transfer process. For Ra >100 (in
the numerical part) convection became
predominant mechanism and the
average Nusselt number began to
clearly increase.

Most of the experimental values were
lower than that of the numerical; one
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of the reasons may be the conduction
losses through the sides and hence the
absence of perfectly insulated ends
boundaries and may be because of the
assumptions which had been taken and
this is true even for this research or for
[Prasad and Kulacki 1985] and
[Havstad and Burns 1982] .

NU

NU

n=12, H=7mm .
Fig. 14, The distribution of local Nusselt number in ¢ and Z — direction for Ra =100
and 6=0

Available online at: www.iasj.net

A comparison for the variation of the
average Nusselt number on the inner
and outer cylinders with Ra” was made
with that of Fukuda[1] in Fig. 16 and
its clear that Nu is constant for low
values of Ra’, until Ra" equal nearly
100, then Nu will increase with the
increasing of Ra" as presented in this
work.

NuU

NuU

FIA

n=12, H=11mm
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18

Conclusions

The following major conclusions can
be drawn from the experimental and
numerical study:

1- Average Nu number increases with
increasing fin length at the same
Ra  and fin number unless the
surface area of the inner cylinder
exceeds that of the outer cylinder,

2-

3-

IJCPE Vol.12 No.4 (December 2011)

then the heat will be stored in the
porous media.

There is a reduction in the average
Nusselt number with increasing the
number of fins and with the
increasing of inclination angle,
radius ratio and fin length.

For all parameters, results showed
that the average Nu number
increases with an increase in
modified Rayleigh number and

Available online at: www.iasj.net



Saad M. AL-Mashaat and Manal H. AL-Hafidh

hardlx affected by o for low values
of Ra .

7-

Harith - H.  H., 2009 “An
Investigation of Fins Geometry

4- Increasing Rr cause a clearly Effects for Laminar Free
increase in average Nusselt number Convection in Horizontal Annulus
for Ra > 100. with Finned Inner Cylinder”, Msc

5- The peak of the local Nu on the Thesis, University of Baghdad.
outer cylinder wall generally 8- Prasad, V. and Kulacki, F. A,
appeared at a position of Z=L (at the “Natural Convection in Porous
top) and ¢ with some deviation from Media  Bounded by  Short
7. while for the inner cylinder the Concentric  Vertical Cylinders”,
peak appeared at a position of Z=0 Transaction of ASME, J. of Heat
(bottom of the cylinder). Transfer , Vol. 107, pp. 147-154,

February, 1985.
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Latin Symbols
Symbol Description Unit
Cp Specific heatat | kJ/kgeC
constant
pressure
FIA @ in Fig. 13 -
g Acceleration due m/s
to gravity
Hs Fin length m
¢ Thermal Wim K
conductivity of
the fluid
ks Thermal W/m K
conductivity of
the solid
Kett. Effective W/m K
thermal
conductivity of
the porous
media
K Permeability m
[ Cylinder length m
L Dimensionless -
cylinder length
Nu, Local Nusselt -
number on the
inner cylinder
Nu, Local Nusselt -
number on the
outer cylinder

p Pressure N/m?
q Local heat flux W
r Radial m
coordinate
R Dimensionless m
radial coordinate
Symbol Description Unit
Ra” Modified -
Rayleigh
number
Rr Radius ratio -
S Fin pitch m
T Temperature K
t Fin thickness m
Ur,Ug,U, velocity m/s

component in r,¢
and z - direction
U, U, U, Dimensionless -
velocity
component in R,
¢and Z
direction
X, Y, 2 Cartesian m
coordinate
system
z Dimensionless -
axial coordinate
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