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Abstract 

   An experimental and numerical study was carried out to investigate the heat transfer 

by natural convection in a three dimensional annulus enclosure filled with porous 

media (silica sand) between two inclined concentric cylinders with (and without) 

annular fins attached to the inner cylinder under steady state condition. The 

experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra
*
≤ 11) 

and extended to Ra
*
=500 for  numerical  study and for annulus  inclination  angle  of 

(δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation 

under assumptions that used Darcy law and Boussinesq’s approximation and then it 

was solved numerically using finite difference approximation. It was found that the 

average Nusselt number depends on (Ra
*
, Hf, δ and Rr ). The results showed that the 

increasing of the fin length increases the heat transfer rate for any fin pitch unless the 

area of the inner cylinder exceeds that of the outer one; then the heat will be stored in 

the porous media.  A comparison was made between the results of the present work 

and those of other researches for the case without fins and excellent agreement was 

obtained. 

:الخلاصة  
أجريت في هذا البحث دراسة عملية ونظرية لإنتقال الطاقة الحرارية بالحمل الحر في فجوة حلقية ثلاثية الأبعاد 

ل( بين أسطوانتين مائلتين متحدتي المركز بوجود )وعدم وجود( زعانف متصلة مملؤة بوسط مسامي)رم
 *Ra ≥ 0.2)بالإسطوانة الداخلية تحت شروط حالة الإستقرار. أجريت التجارب العملية لمدى عدد رالي المعدّل 

تم كتابة  (.˚δ = 0˚, 30˚, 60˚ and 90)      في الجزء النظري ولزاوية ميل Ra*= 500ولمدى  (11≥
 بدلالة معادلة الى وتحويلها بوسنسك تحت فرضيات قانون دارسي وتقريبالمعادلات الحاكمة في الدراسة النظرية 

الفروق المحددة. تتضمن إمكانية الحل العددي حساب  طريقة باستخدام حلت عدديا اھبدور والتي المتجه الجهد
متوسط. بينت النتائج أن عدد نسلت المتوسط يعتمد على الجهد المتجه ودرجة الحرارة وعدد نسلت الموقعي وال

عدد رالي المعدّل وطول الزعنفة وزاوية ميل الأسطوانة ونسبة الأقطار,  بينت النتائج أن زيادة طول الزعنفة لأي 
على خطوة زعنفة يسبب زيادة في أنتقال الطاقة الحرارية إلا في حالة زيادة المساحة السطحية للأسطوانة الداخلية 

تلك التي للأسطوانة الخارجية فإن ذلك يتسبب في خزن الطاقة الحرارية في الوسط المسامي. قورنت النتائج 
 للبحث الحالي مع نتائج بحوث أخرى في حالة عدم وجود زعانف وأعطت توافق جيد.
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Introduction 

   In recent years, natural convection in 

a cylindrical annulus has attracted 

much attention in relation to solar 

collectors, thermal storage systems and 

spent nuclear fuel cooling. A review of 

the works concerning this 

configuration was presented by Kuehn 

and Goldstein [l]. However, most of 

them were for horizontal concentric 

cylinders with infinite axial length. In 

this case, a two-dimensional (2-D) 

analysis is allowed because the 

convective flow is confined to the 

vertical plane and the flow pattern is 

identical in each annular cross section. 

On the other hand, a three dimensional 

(3-D) treatment is unavoidable in the 

horizontal case with the finite axial 

length and the rigid axial boundary 

surfaces and/or in the case when the 

cylinders are inclined from the horizon, 

because the viscous shearing force at 

the end walls and/or the gravitational 

force have an effect on the convection 

toward the axial direction Fukuda [1]. 

   In the 3-D numerical analysis, the 

matrix to be dealt with is far larger 

than that in the 2-D case, taking more 

CPU time to obtain the solution. 

Recently it has become feasible to treat 

this problem due to improvements in 

processing speed and memory capacity 

of digital computers. Several numerical 

works have been performed, most of 

them for rectangular enclosures. 

Numerical analysis has been performed 

by Fukuda [1] on three dimensional 

natural convection enclosed with 

concentric inclined cylinders. 

Governing equations were numerically 

solved by means of over – relaxation 

method for ranges of RaDa (a product 

of Rayleigh number Ra and Darcy 

number Da) from 1 to 1000 and an 

angle of inclination of cylinders from 

the horizon of 0 to π/2. Results showed 

that the local Nusselt number on the 

inner cylinder wall has its maximum 

value at bottom end, while Nusselt 

number on the outer cylinder wall has 

its maximum value at top end. 

However, the average Nusselt number 

depends largely on only RaDa and is 

hardly affected by the inclination. 

   Bogdan [2] presented experimental 

and numerical work investigating the 

effect of metallic porous materials, 

inserted in a pipe, on the rate of heat 

transfer. The pipe is subjected to a 

constant and uniform heat flux. The 

effects of porosity, porous material 

diameter and thermal conductivity as 

well as Reynolds number on the heat 

transfer rate and pressure drop are 

investigated. The results are compared 

with the clear flow case where no 

porous material was used. It is shown 

that for an accurate simulation of heat 

transfer when a porous insert is 

employed its effective thermal 

conductivity should be carefully 

evaluated. 

    Ramón [3] numerically investigated 

three-dimensional natural convection 

of air in a cubical enclosure with a fin 

on the hot wall for Rayleigh numbers 

of 10
3
–10

6
. The fin, with a thickness of 

1/10 of the cavity side, is placed 

horizontally on the hot wall. The solid 

to fluid thermal conductivity ratio (Rk) 

and the fin width are varied. Because 

the fin is shorter than the cavity side, 

the cold flow sweeps the lower fin face 

and the hot wall at the clearances 

between the fin sides and the lateral 

walls, where high vertical velocities 

are reached. The fin inhibits the frontal 

and lateral access of fluid to the upper 

fin face, especially at low Rayleigh 

numbers. Low values of Rk cause heat 

transfer reductions. The contribution of 

the fin faces increases at high Rk 

causing heat transfer enhancements 

above 20%, which exceed the ones 

obtained in most two-dimensional 

studies. In the range of Ra from 10
5
 to 

10
6
, maximum heat transfer rates are 

found for dimensionless fin widths of 

0.6 and 0.8 respectively. It is 
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concluded that for 10
5
 ≤ Ra ≤ 10

6
 a fin 

of partial width is more effective in 

promoting heat transfer than a fin of 

full width. 

 

Experimental Study 

   Three outer cylinders of different 

diameters were manufactured to vary 

the radius ratio and to vary the fin 

length; ten inner cylinders were 

manufactured one without fins and the 

others with different fin length(Hf 

=3mm, 7mm and 11mm), radius ratios 

of (Rr=(r1/r2) = 0.293, 0.364  and 

0.435), number of fins (n=12, 23 and 

45) and pitch length of (s = 19.2mm, 

8.4mm and 3mm) to investigate the 

effect of these parameters and the 

effect of modified Rayleigh number by 

the variation of the temperature 

difference between the two concentric 

cylinders by means of a variable 

electric input power. Aluminum was 

chosen because of its high thermal 

conductivity and easy machinability. 

The test section consists of a three 

Aluminum outer cylinders of (100 

mm), (82 mm) and (70 mm) outside 

diameters, (4 mm) thick and (260mm) 

long to which ten Aluminum inner 

cylinders of (27mm) outside diameter, 

(260 mm) long and (5 mm) thick. The 

inner cylinder was heated by passing 

an alternating current to a heater inside 

the inner cylinder and the outer 

cylinder was subjected to the 

surrounding temperature (freezer) 

where the minimum temperature was 

270 K. The inner cylinder surface 

temperatures were measured at six 

locations using thermocouples type ( 

K). The experimental apparatus is 

shown diagrammatically in Fig. 1 

 

Mathematical Model 

   The schematic drawing of the 

geometry and the Cartesian coordinate 

system employed in solving the 

problem is shown in Fig. 2. 

 

 
Fig.1, Schematic Diagram of 

Experimental Apparatus 
 

 
(a) 

 
(b) 

 

Fig. 2, (a) Geometry and coordinates 

system and (b) Schematic Diagram of 

Inner Cylinder with 8.4mm pitch 

 

   In order to model the incompressible 

flow in the porous medium, the steady-

state equations of the Darcy flow 
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model, namely, the mass, the 

momentum (Darcy), the energy 

conservation laws and the Boussinesq's 

approximation are employed. These 

equations in vectorial notation are 

given by Nield and Bejan [4] and fin 

equation by Ramón [3]. 

 

Governing Equations 

   The conservation equations of mass, 

momentum and energy in steady state 

and the supplementary equation are 

Fukuda [1]: 

  22 1 TT                               (1) 

Where: 

T









1
                                                  (2) 

    is the thermal coefficient of the 

volume expansion; this constant is 

evaluated at T2 which is the 

temperature at the inner surface of the 

outer cylinder, ρ2 is the density at T2 

and ρ is the density at T, Fukuda [1]. 

This technique is called Boussinesq's 

approximation.  
 
Mass Conservation 

0
1










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



z

uu

rr

u

r

u zrr




        (3) 

 

Momentum Equations 

   The most common model used for 

flow in the porous media is the Darcy 

flow model. Darcy’s law states that the 

volume average velocity through the 

porous material is proportional with 

the pressure gradient. In three 

dimensional flows, the Darcy’s model 

Wang [5] is: 

 

Momentum Equation in Radial 

Direction 














 


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r
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u

f

r      (4) 

Momentum Equation in Angular 

Direction 














 


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1
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p

r

K
u
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  (5) 

Momentum Equation in Axial 

Direction 
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Energy Equation 
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                                                                       (7) 
 

Where   is viscous dissipation 

function. 

 

Fin Equation 

   Within the fin itself, the energy 

equation is Ramón [3]: 

0
1










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



z

TT

rr

T

r

T


                    (8) 

   Following Aziz [6] a vector potential 

 with its components: 

 ),, zr                             

Defined by: 

 .effU                                      (9) 

Z

UU

R

z
r
















12
                         (10) 

R

U

Z

U zr









 

2
                               (11) 

 













 r

Z

U

RR

RU

R

112
            (12) 

 

Non Dimensional Variables 

   The characteristic length for the 

present study is r2 Fukuda [1] to 

convert the governing equations to the 

dimensionless form, the dimensionless 

magnitudes must be defined as follow: 
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2r

r
R  , 

2r

z
Z  , 

m

r

r
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U


 , 
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U





  , 
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z

z

lu
U


 , 

   212 / TTTT 
,
   

2r

lKp
P

feff 
    

     .1221 / effrrTTKgRa 

,  

2

1
2 r

s
S  , 

2

2
2

r

t
s

S



    

2

1
r

H
H

f


 
 

Substitute these dimensionless 

magnitudes in the governing equations. 

   Alternative expressions of Eq. (3) 

may be written in terms of  

:, asand zr  
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   Taking curl of momentum equations 

to eliminate pressure terms, the 

momentum equations will be: 

 

 























ZRrr

l
Ra







 cossinsin

1

12

 

 

ZRZ

RRRR

R

RR

zr

rrrr





































2

121

2

2

2

2

222

2

                                                                 

                                                                     (16) 

 























RZrr

l
Ra





 sincoscos

12

RRRR

RRZ

r








































12

1

22

2

2

22

2

2

2

                                                            

                                                                     (17) 

 

 


























 

RRrr

l
Ra







 sincos

1
cos

12

2

2

2

2

22

2
11

ZRRRR

zzzz


























                                                                     

                                                                     (18) 

 

   The vector potential equation was 

obtained in the dimensionless form as 
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And the energy equation will be: 
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And the fin equation will be: 
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Dimensionless Hydraulic Boundary 

Conditions 

   For the vector potential field, the 

boundary conditions are given as: 
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   And for the fin, the boundary 

conditions are given as: 
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   On the fin faces which were located 

on the following planes 

At   R = R1         for     = 0, π    (fin 

base) 

As in    Fig. 3 

At    r = r1+Hf     for     = 0, π    (fin 

tip) 

At   andranyforSandS 21  

 
Fig. 3,  Fin boundary conditions 

 

Dimensionless Thermal Boundary 

Conditions 

   For the temperature field, the 

dimensionless thermal boundary 

conditions are: 
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Where: 

 

keff. =the effective thermal conductivity 

of the medium (W/mK). 
 

  fsef kkk   1                          (24) 

 

Computational Technique 

   Equations (16, 17, 18, 22 and 23) 

were transformed into the finite 

difference equations, where the upwind 

differential method in the left hand side 

of the energy Eq. (22) and the centered 

– space differential method for the 

other terms were used, and solved by 

using (SOR) method Wang [5]. A 

computer program was built using 

Fortran 90 language to meet the 

requirements of the problem.  

   The value of the vector potential   

will be calculated at each node, in 

which the value of vector potential is 
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unknown, the other node will appear in 

the right hand side of each equation. 

As an initial value of iteration, zero is 

chosen for the vector potential field, 

while a conduction solution is adopted 

for temperature field. The index (n) 

was used to represent the nth – 

approximation of temperature denoted 

by n  and substituted into the 

approximated equations, which were 

solved to obtain the nth – 

approximation of vector potential  , 

then   was substituted into Eq. (22) to 

obtain 1n . A similar procedure is 

repeated until the prescribed 

convergence criterion given by 

inequality: 

 

8
1

10




n

nn

Max



     

 

was established Fukuda [1].  

   As the steps of iteration increase with 

Ra
*
, a solution obtained for lower Ra

*
 

was used as an initial value of 

computation for higher Ra
*
 (double 

iteration method).  

It is clear that as the grid becomes 

finer, the convergence of the results 

becomes better. The number of grid 

points used was 21 grid points in the R 

– direction, 31 in the   – direction and 

301 in the Z – direction which seems 

reasonable and will be used in the 

present study. Fig. 4 illustrate the 

numerical grid in two planes.  

 
(a) Horizontal (R – ϕ) Plane 

 
(b) Vertical (R – Z) Plane 

Fig. 4, Numerical Grid  

 

Calculation of Local and Average 

Nusselt Number 

   Nusselt number is the dimensionless 

parameter indicative of the rate of 

energy convection from a surface and 

can be obtained as follows Fukuda 

[1]: 

 
 21

12

TTk

rrq
Nu




                                       (25) 

   As the local heat flux on the wall is 

given by: 
 

r

T
kq



                                                (26) 

   The local Nusselt number Nu1 and 

Nu2 on the inner and the outer 

cylinders are written in the form 

Fukuda [1]: 

 
1

11 1
RRR

RNu

















                  (27) 

 
11

12 1
















RR
RNu


                  (28) 

   The average Nusselt number Nuin 

and Nuout on the inner and the outer 

cylinders are defined as: 

   
















L

RR

in dZd
RL

RNu
0 0

1

1
1








                                                                     (29) 

 

   
















L

R

out dZd
RL

RNu
0 0

1

1

1
1








                                                                     (30) 
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Results and Discussion 

   Figs. 5 to 8 show the variation of the 

average Nusselt number on the hot 

cylinder with Ra
*
 for different radius 

ratios, without and with fins 

respectively. These figures show that 

for any radius ratio, the average Nu is 

generally constant for low values of 

Ra
*
 then as Ra

*
 reached nearly 100, Nu 

increased with increasing Ra
*
. These 

values increased as Rr decreased due to 

the enlarge of the distance between the 

two cylinders. For low values of Ra
*
, 

the maximum values of Nu was for 

maximum Rr until Ra
*
 reached nearly 

100, then the situation would inverse 

and the maximum values of Nu would 

be for minimum Rr which improved 

that for low values of Ra
*
 the heat 

transferred by conduction and as Ra
*
 

increased the convection heat transfer 

and that would be the dominant. These 

figures show as Ra
*
 exceeds 100, as Hf 

increases Nu decreases and decreasing 

the pitch (by increasing fin numbers) 

causes Nu to decrease. 

   Fig. 9 illustrates that the values of  

the average Nusselt number was low 

for high radius ratio; then they 

increased with high intensity as radius 

ratio decreased. When the annulus gap 

decreased, the resistance to the 

circulation motion of the convection 

cells increased and this lead to slower 

replacement of the hot air adjacent to 

the inner surface by the cold air 

adjacent to the outer surface and these 

resulted in an increase in the average 

temperature of the annulus inner 

surface and consequently in a decrease 

in the rate of heat transfer. It is clear 

that the curves of the different radius 

ratios converge to each others as Ra
*
 

decreases; this means that the effect of 

radius ratio on the rate of heat transfer 

decreases with decreasing Ra
*
. This 

can be attributed to that as Ra
*
 

decreases the heat convection becomes 

insignificant, or in other words, heat 

conduction becomes the dominant heat 

transfer in the fluid layer.  

   Convective heat transfer rate is 

controlled by three parameters (h, A 

and ΔT), according to 

   2121 TTAhTTAhQ outoini   

For the same modified Rayleigh 

number (i.e. ΔT is constant), 

dQ/Q=(dA/A)+(dh/h). If the increase 

in the surface area is more than the 

decrease in the heat transfer coefficient 

(average Nu), the total heat transfer 

rate will increase, or if the decrease in 

the heat transfer coefficient is more 

than the increase in the surface area, 

the total heat transfer rate will decrease 

Harith [7]. 

Fig. 10 indicates that there is a 

reduction in the average Nusselt 

number with increasing Hf from 3mm 

to 11mm. For the same value of Ra
*
, 

reduction in the average Nusselt 

number may be ranged between (18% 

to 38 %). 

Figs. 11 to 13 indicate that there is a 

reduction in the average Nusselt 

number with increasing the number of 

fins from n=12(pitch=19.2mm) to 

n=23(pitch=8.4 mm) and then to 

n=45(pitch=3mm) with the increasing 

of inclination angle, radius ratio and 

fin length. 

   The distribution of the local Nusselt 

number are shown in Fig. 14.The peak 

of the local Nu on the outer cylinder 

wall generally appeared at a position of 

Z=L (at the top) and ϕ with some 

deviation from π. while for the inner 

cylinder the peak appeared at a 

position of Z=0 (bottom of the 

cylinder). 
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Fig. 5, Variation of average Nusselt   number with Ra
*
on the hot cylinder for n=0 and 

for different values of Rr and δ 

 
                                     

  
                                                                        

  
 

  
                                       

  
                                                                       

  
 

Fig. 6, Variation of average Nusselt number with Ra
*
 on the hot cylinder for n=12, 

Hf=3mm and for different Rr, δ 
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                           Hf 7mm,    

 
                                                   Hf 7mm,     

 
 

 
                              Hf 11mm,    

                                                                            
 Hf 11mm,     

  

Fig. 7, Variation of average Nusselt number with Ra
*
 on the hot cylinder for n=12and 

for different Rr and δ 
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Fig. 8, Variation of average Nusselt number with Ra
*
 on the hot cylinder for 

Hf=11mm and for different Rr 
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                                                      n=12 

 
                                n=23                                                                   n=45  

 Fig. 9, Variation of average Nusselt number with Rr for Hf=7mm δ =30
 
 and for 

different Ra
* 

 
                                         

 
                                                                         

  

 
                                          

 
                                                                      

  

Fig. 10, Variation of average Nusselt number with Rr for Ra
*
=500, n=12 and for 

different Hf  and δ
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                                   Ra

*
=500                                                              Ra

*
=1 

Fig. 11, Variation of average Nusselt number with δ for Rr=0.435  and for different n 

and Hf   

 
                                Ra

*
=500                                                             Ra

*
=10 

Fig. 12, Variation of average Nusselt number with Rr for δ =0, Hf=11mm and for 

different n and Ra 

 
                                        

 
                                                                       

 
 

Fig. 13, Variation of average Nusselt number with Hf and for Rr=0.135 and  different 

n and Ra
* 

 

Fig. 15 illustrate the relation between 
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Hf=3mm. The average Nusselt number 

was nearly constant because of the 

predominance of conduction mode on 

heat transfer process. For Ra
*
˃100 (in 

the numerical part) convection became 

predominant mechanism and the 

average Nusselt number began to 

clearly increase.  
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of the reasons may be the conduction 

losses through the sides and hence the 

absence of perfectly insulated ends 

boundaries and may be because of the 

assumptions which had been taken and 

this is true even for this research or for 

[Prasad and Kulacki 1985] and 

[Havstad and Burns 1982] .  

A comparison for the variation of the 

average Nusselt number on the inner 

and outer cylinders with Ra
*
 was made 

with that of Fukuda[1] in Fig. 16 and 

its clear that Nu is constant for low 

values of Ra
*
, until Ra

*
 equal nearly 

100, then Nu will increase with the 

increasing of Ra
*
 as presented in this 

work. 
 

 
 

 

               
 

                                            n=0                                                       n=12, Hf=3mm  

                   
                                      n=12, Hf=7mm                                            n=12, Hf=11mm 
Fig. 14, The distribution of local Nusselt number in ϕ and Z – direction for Ra

*
=100 

and δ=0
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Fig. 15, Variation of average Nusselt number with modified Ra for different Rr and δ 

for n=12, Hf =3mm 
 

 
                                      Fukuda[1]                                                   Present Work 

Fig. 16, A comparison for the variation of the average Nusselt with Ra
*
 for Fukuda[1] 

with that of the present work respectively 
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increasing fin length at the same 

Ra
*
 and fin number unless the 

surface area of the inner cylinder 

exceeds that of the outer cylinder, 

then the heat will be stored in the 

porous media. 

2- There is a reduction in the average 

Nusselt number with increasing the 

number of fins and with the 

increasing of inclination angle, 

radius ratio and fin length. 

3- For all parameters, results showed 

that the average Nu number 

increases with an increase in 

modified Rayleigh number and 
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hardly affected by δ for low values 

of Ra
*
. 

4- Increasing Rr cause a clearly 

increase in average Nusselt number 

for Ra
*
˃ 100. 

5- The peak of the local Nu on the 

outer cylinder wall generally 

appeared at a position of Z=L (at the 

top) and ϕ with some deviation from 

π. while for the inner cylinder the 

peak appeared at a position of Z=0 

(bottom of the cylinder). 
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Nomenclature 

Greek Symbols 
Symbol Description Unit 

 Thermal 

diffusivity 

m
2
/s 

 Volumetric 

thermal 

expansion 

coefficient 

1/K 

δ Angle of 

inclination 

degree
 

θ Dimensionless 

temperature 

- 

υ Kinematic 

viscosity of 

fluid 

m
2
/s 

μf Dynamic 

viscosity of 

fluid 

N.s/m
2 
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Latin Symbols 
Symbol Description Unit 

Cp Specific heat at 

constant 

pressure 

 J/ g   C 

 

FIA Φ in Fig. 13 - 

g Acceleration due 

to gravity 

m/s
2
 

Hf Fin length m 

kf Thermal 

conductivity of 

the fluid 

W/m K 

ks Thermal 

conductivity of 

the solid 

W/m K 

Keff. Effective 

thermal 

conductivity of 

the porous 

media 

W/m K 

K Permeability m
2 

l Cylinder length m 

L Dimensionless 

cylinder length 

- 

Nu1 Local Nusselt 

number on the 

inner cylinder 

- 

Nu2 Local Nusselt 

number on the 

outer cylinder 

- 

p Pressure N/m
2 

q Local heat flux W 

r Radial 

coordinate 

m 

R Dimensionless 

radial coordinate 

m 

Symbol Description Unit 

Ra
* 

Modified 

Rayleigh 

number 

- 

Rr Radius ratio - 

S Fin pitch m 

T Temperature K 

t Fin thickness m 

ur,uϕ,uz velocity 

component in r,ϕ 

and z - direction 

m/s 

Ur, Uϕ, Uz Dimensionless 

velocity 

component in R, 

ϕ and Z 

direction 

- 

x, y, z Cartesian 

coordinate 

system 

m 

Z Dimensionless 

axial coordinate 

- 

 

 


