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Abstract 

In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these 

correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 

measurements collected from the open literature, a correlation for  bubble sizes in the homogenous region in bubble 

columns was derived using Artificial Neural Network (ANN) modeling.  The bubble diameter was found to be a function 

of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface 

tension.  Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 

7.3 % and correlation coefficient of 92.2%. A comparison with selected correlations in the literature showed that the 

developed ANN correlation noticeably improved the prediction of bubble sizes. The developed correlation also shows 

better prediction over a wide range of operation parameters in bubble columns. 

Introduction 

The design and scale-up of bubble columns have gained 

considerable attention due to complex hydrodynamics 
and its influence on transport characteristics. Although 

the construction of these columns is simple, accurate and 

successful design and scale-up require an improved 

understanding of multiphase fluid dynamics and its 

influences. The design and scale- up of bubble column 

reactors generally depend on the quantification of three 

main phenomena;    

 (i) heat and mass transfer characteristics;  

 (ii) Mixing characteristics; 

 (iii) Chemical kinetics of the reacting system. Thus the 

reported studies emphasize the requirement of the 

multiphase fluid dynamics and its influence on phase 

hold up, mixing and transport properties ( Degaleesan et 

al 2001). Scale –up problems basically stem from the 

scale dependency on the aforementioned phenomena. 

Scale –up methods used in biotechnology and chemical 

industry range from know-how based methods that are in 

turn based on empirical guidelines, scale –up rules and 

dimensional analysis to know why based approaches that 

begin with regime analysis. This analysis is 

hydrodynamics ( Deckwer and Schumpe 1993). More 

specifically, in order to design bubble column  reactors 

the following hydrodynamic parameters are required: 

specific gas-liquid interfacial area, axial  dispersion 

coefficients of the gas and liquid , sauter mean bubble 

diameter, heat and mass transfer coefficient, gas hold up, 

physicochemical properties of the liquid medium. In 

order to estimate these design parameters for the system, 

experimental studies benefit from specialized measuring 

devices and accessories.  
The fluid dynamic characterization of bubble column 

reactors has a significant effect on their operation and 

performance. Bubble populations, their hold up 

contributions and rise velocities have significant impact 

on altering the hydrodynamics, as well as heat and mass 

transfer coefficients. Many literature correlations are 

proposed to predict sizes of bubbles and most important 

ones are presented in Table (1). 

The average bubble size in a bubble column has been 

found to be affected by gas velocity, liquid properties, 

gas distribution, operating pressure and column diameter 

( Kantarci et al 2005).  

University of Baghdad 

College of Engineering 
Iraqi Journal of Chemical 

and Petroleum Engineering 

 



Prediction of bubble size in Bubble columns using 

 

2 
IJCPE Vol.10 No.1 (2009) 

 

Since the early 80s, artificial neural networks (ANNs) 

have been used extensively in chemical engineering for 

such various applications as adaptive control, model 

based control, process monitoring, fault detection, 

dynamic modeling, and parameter (Bhat and McAvoy 

1990). ANN provides a non-linear mapping between 

input and output variables and is also useful in providing 

cross- correlation among these variables. The mapping is 

performed by the use of processing elements and 

connection weights. The neural network is a useful tool in 

rapid predictions such as steady- state or transient process 
flow sheet simulations. Cai et al 1994 applied Kohonen 

self-organizing neural networks to identify flow regimes 

in horizontal air-water flow. Leib et al 1995 used a neural 

network model along with the mixed-cell model to 

predict slurry bubble column performance for the 

Fischer-Tropsch synthesis. Piche et al 2001, and Illuta et 

al 2002 used an ANN to improve the prediction of 

various hydrodynamic parameter in packed bed and 

fluidized bed reactors .Shaikh and Al- Dahhan 2003, 

Behkish et al 2005 used a Back Propagation Neural 

Network to predict the hold up bubble columns, while Al-

Hemiri and Ahmedzeki 2008 used the same type of 

network to predict the heat transfer coefficient in bubble 

columns. 

Building on these studies, the focus of this work is to 

develop a unified correlation for the bubble size 

prediction in the homogeneous region in bubble columns 

which can be useful for design engineers. This correlation 

is derived from the experimental data bank collected from 

the open literature.  

Building ANN 

ANNs are being applied to an increasing number of real- 
world problems of considerable complexity. It is a 

massively parallel distributed processor that has a natural 

propensity for storing experimental knowledge and 

making it available.  

In the present work, a multilayer neural network has been 

used, as it is effective in finding complex non- linear 

relationships. Training was accomplished using 

NeuroSolutions by Excel version 5, supplied by 

NeuroDimension, Inc. copyright 1997-2005. 

MLP (Multi-layer perceptron) is known as a supervised 

network because it requires a desired output in order to 

learn. The goal of this type of network is to create a 

model that correctly maps the input to the output using 

historical data so that the model can then be used to 

produce the output when the desired output is unknown. 

This type was used which is multilayered FeedForward 

Network (MLFF), trained with static back propagation 

(Bp) of error using the generalized Delta rule [MATLAB, 

2003]. Bp was one of the first general techniques 

developed to train multi-layer networks, which does not 
have many of the inherent limitations of the earlier, single 

-layer neural nets. The Bp algorithm is an iterative 

gradient algorithm designed to minimize the mean-

squared error between the desired output and the actual 

output for a particular input to the network [Lendaris, 

2004]. Basically, Bp learning consists of two passes 

through the different layers of the network: a forward 

pass and backward pass. During the forward pass the 

synaptic weights of the network are all fixed. During the 

backward pass, on the other hand, the synaptic weights 

are all adjusted in accordance with an error-correction 

rule [Lippmann, 1987]. This algorithm may be found 
elsewhere [Lendaris, 2004]. 

Bp is easy to implement, and has been shown to produce 

relatively good results in many applications. It is capable 

of approximating arbitrary non-linear mappings. The 

success of Bp methods very much depends on problem 

specific parameter settings and on the topology of the 

network [Leonard 1990].  

Training a Back-Propagation Network 

The steps for back- propagation training can be shown as 

follows (Leonard, 1990): 

1. Initialize the weights with small, random values. 

2. Each input unit broadcasts its value to all of the 

hidden units. 

3. Each hidden unit sums its input signals and applies 

its activation function to compute its output signal. 

4. Each hidden unit sends its signal to the output units. 

5. Each output unit sums its input signals and applies 

its activation function ( hyperbolic tan in the present 

simulation)to compute its output signal. 

6. Each-output unit updates its weights and bias. 

Development of ANN based correlation 

Database generation 

Collecting of the data is the preliminary step for building 

ANN. In this model 230 experimental data points ( for 

bubble diameter in the homogeneous region in bubble 

column) were collected from literature spanning the years 

(1956-2005). The source of data which is the past 

experimental work of different systems is given Table 

(2). Different geometries of bubble columns with various 

liquids (water, solutions of ethanol, buthanol, NaOH, and 

glycerol), were included in the data bank.  

The input parameters to the network were selected from 

the most important parameters affecting bubble diameter. 

Therefore, six parameters were chosen as the input layer 

given in Table (3) with the range taken for each. 

The output to the network ( the desired parameter) is the 

bubble diameter for bubbles in the homogeneous region.  
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ANN Design  

Training was accomplished using NeuroSolutions by 

Excel version 5, from NeuroDimension, Inc. copyright 

1997-2005. Multilayered feedforward network. type was 

used and trained with static backpropagation of error. 

75% of the collected data (230) was set for training and 

the rest is for testing. The ANN topology consists of three 

layers; the first is the input layer with six neurons ( PEs) 

representing the six aforementioned parameters. The 

second consists of one or two hidden layers which is the 

varying part in this work , each with different number of 

neurons.    The selection of the number of hidden layers  
and the number of neurons (perceptrons or PEs )in each 

hidden layer is the target for such research and it is 

troublesome. For the purpose of finding the best 

architecture of the network, the testing MSE, %AARE 

and the correlation coefficient (%R) which should be 

around unity, are calculated and compared for each 

topology and for each type of ANN. Testing is made for 

the 25% part of the collected data which are not seen by 

the network 

 

The size of the mean square error (MSE) can be used to 

determine how well the network output fits the desired 

output, but it doesn't necessarily reflect whether the two 

sets of data move in the same direction. For instance, by 

simply scaling the network output, we can change the 

MSE without changing the directionality of the data. The 

correlation coefficient (R) solves this problem. 

  

By comparing the results of ANN models, which have 

different number of PEs in each hidden layer, the optimal 

ANN structure has been obtained. All trials were made 
initially using a hyperbolic tangent (tanh) activation 

function, constant momentum rate (The acceleration 

parameter used to improve convergence) of 0.7 and 5000 

number of iterations (how many times the network sees 

the whole data).  

 

 

Results and Discussion 

(i) One hidden layer 
First trials were made using one hidden layer.  The 

number of processing elements were changed using 

constant parameters of activation function of (tanh), 

momentum rate of (0.7) and 5000 iterations. Results for 
selected ANN structures of one hidden layer are listed for 

comparison in Table (4). 

 

The number of processing elements in the hidden layer 

was plotted against MSE, correlation coefficient and 

%AARE. These relations are shown in Figures 1,2 and 3.  

 

 

(ii) Two hidden layers 

 
In order to find a better performance of the network, 

many topologies of two hidden layers were also 

examined. Different numbers of processing elements in 
each layer were applied and the results of MSE, %AARE 

and correlation coefficient were compared. Some selected 

structures are listed for comparison in Table (5). 

By examining Table (5), it would be obvious that the 

performance of ANN structure using two hidden layers is 

improved in comparison with one hidden layer. The 

structure of [6-12-12-1] is found the best.     Further 

investigation was made for the optimum ANN structure 

of [6-12-12-1] by changing the momentum rate. It was 

found that the momentum rate of 0.7 ( by default) still 

gave the best performance for AAN model. Results are 

given in Table (6). 

 

The numbers of processing elements in the second hidden 

layer were varied to see the effect on the performance of 

the network. Results given in Table (7), showed that [6-

12-12-1] is the best structure among others. 

 

Therefore, after careful training of the network, testing 

showed that ANN structure of [6-12-12-1] using the 

activation function of (tanh), momentum rate of 0.7 and 

after 5000 iterations, had correlated the bubble diameter 

in the homogenous region in bubble columns 

successfully. The result of prediction is plotted with 

experimental values as shown in Figs (4) and (5). 

Statistical analysis based on the test data is calculated to 

validate the accuracy of the output for pervious 

correlation model based on ANN. The structure for each 

model should give the best output prediction, which is 

checked by using statistical analysis. Results are given in 

Table (8). 

The proposed model of ANN was compared with 

literature correlations. These correlations showed poor 

agreement between the prediction and experimental 

bubble diameter values. Results are given in Table (9) 

and its graphical representation is shown in Fig (6). The 

problem facing ordinary correlation (when used for 

reproducing other experimental data) is that it is restricted 

to their systems and range of variables studied, leading to 

high percentage of error. 
Artificial neural network had proved that it is powerful 

tool in solving complex non-linear relationships when 

ordinary correlations fail to simulate experimental data. 
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Table 1 Correlations for bubble size (Kantarci et al 2005) 
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Table 2 Database References. 

No. Researcher(s) System 

1 
Van den Hangel 

(2005) 
Air-water, dT=0.052m, 0.02m. 

2 
Mews and 
Wiemann (2004) 

Air-water , dT=0.15m, perforated 
plate. 

3 Hillmer (1993) dT=0.15m, do=0.003m, 

4 Shah et al (1985) 
Air-water and different 

concentrations of aqueous ethanol , 

dT=0.1m, do=0.001m. 

5 Miayhara (1983) 
Air-water, dT=0.05m, perforated 
plate. 

6 
Kumar et al 

(1976) 

Air-water, kerosene, aqueous 

glycerol and 2N  NAOH, 

dT=0.01m,single orifice 
do=0.00153m and perforated  plate. 

7 Koide et al (1966) 
Air-water, (53and 80% by vol.) 

glycerin dT =0.15m, perforated 
plate. 

8 
Towell et al 

(1965) 

Air-water, dT= 0.406m ,perforated 

plate. 

9 Tadakiet (1963) dT =0.01m, do=0.001m 

10 
Leibson et al 
(1956) 

Air-water and aqueous butanol, 
dT=0.2m, do=(0.0016-0.003)m. 

11 
Van Krevelen and 
Hoftijzer(1950) 

Air-water, dT= (0.02-0.06m), single 
orifice of different sizes. 

 

 

 

 

 

Table 3 Range of the input parameters 

 

In
p

u
t 

Parameter Range 

Superficial velocity 
0.00012- 0.01995 

m/s 

Orifice diameter 0.000419 – 0.02m 

Column diameter 0.026-0.2  m 

Liquid density 787.2-1211 kg/m3 

Liquid viscosity 0.00088-0.035 Pa.s 

Liquid surface tension 0.0745- 0.0072 N m 

Output Bubble diameter 0.00204 -0.00925 m 

 

 

 

Table 4 Different ANN structures using one hidden layer. 
Case ANN Structure MSE %AARE %R 

1 6-4-1* 5.22 x 10-7 12 75.8 

2 6-8-1 6.35 x 10-7 13.8 73.6 

3 6-10-1 6.3 x 10-7 13.1 73 

4 6-12-1 5.19 x 10-7 11.78 77 

5 6-14-1 6.88 x 10-7 13.9 71 

6 6-16-1 7.38 x 10-7 14.48 69.6 

7 6-20-1 6.7 x 10-7 13.4 70 

 

* refers to the number of neurons in the [input- hidden-

output] layer 
 

 

Table 5 ANN structure using two hidden layers. 

 

 
 

 Table 6 Different momentum rates for the [6-12-12-1] 

ANN model 

 

Momentum MSE %AARE %R 

0.5 3.29E-7 9.2 88 

0.7 2.2E-7 7.3 92.2 

0.8 3.03E-7 8.68 89 

1.0 3.77E-7 9.88 86.5 

Case ANN Structure MSE %AARE %R 

1 6-4-4-1 3.58E-7 10.8 86.8 

2 6-8-8-1 2.6E-7 8.8 90.6 

3 6-10-10-1 2.69E-7 8 90.3 

4 6-12-12-1 2.2E-7 7.3 92.2 

5 6-15-15-1 3.1E-7 9.1 88.7 

6 6-25-25-1 3.55E-7 8.7 87 
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Table 7 ANN structure with different PEs in the second 

hidden layer. 

Case 
ANN 

structure 
MSE %AARE %R 

1 6-12-4-1 2.65E-7 8.86 90.7 

2 6-12-8-1 3.79E-7 8.7 86 

3 6-12-12-1 2.2E-7 7.3 92.2 

4 6-12-16-1 3.3E-7 9.03 88 

5 6-12-20-1 3.3E-7 8.02 87.9 

 

 

 

Table 8 Statistical analysis for the proposed model. 

Performance db 

MSE 2.20721E-07 

NMSE 0.151403968 

MAE 0.000343427 

Min Abs Error 9.19866E-06 

Max Abs Error 0.001536108 

R 0.92209016 

 

 

Table 9 Comparison the present results with previous 

work 

Correlation AARE% %R 

Miller(1974) 37 13.4 

Moo-Young and 

Blanch(1981) 
51 20 

Bhavaraju et al (1978) 79 30 

ANN(present study) 7.3 92.2 
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Fig.1 MSE vs. No. of processing elements in hidden 

layer. 
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  Fig.2  %AARE vs. No. of processing elements in hidden 

layer. 

 

 

68

70

72

74

76

78

80

0 5 10 15 20 25

No. PEs in hidden layer

%
R

 
Fig.3  % R vs. No. of processing elements in hidden 

layer. 
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Fig.4 Desired (measured) and the actual (predicted) values 

vs. testing exemplars. 
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Fig.5 Predicted bubble diameter versus desired values for 

ANN structure of [6-12-12-1] 
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Fig.6 the predicted values by ANN with previous work. 

 

 

Conclusions 

From the present study of using ANN in predicting the 

bubble size in the homogenous region in bubble columns.  

It is concluded that ANN structure of [6-12-12-1] was 

chosen as the best to implement the target of the present 

study. MLP architecture of six inputs in the first layer 

(gas velocity, column diameter, diameter of orifice, liquid 

density, liquid viscosity and liquid surface tension) with 

12 PEs in the 1st hidden layer and 12 PEs in the 2nd 

hidden layer, and one output in the third layer which is 

the desired output of bubble size. Momentum rule was 

0.7, hyperbolic tan activation function, and 5000 numbers 

of iterations were used. ANN predicted well the diameter 

of bubbles which is better than those, obtained for the 

selected literature correlations; it yielded a minimum 

AARE of %7.3 and a correlation coefficient of 92.2%. 

NOMENCALATURE 

AARE: Average Absolute Relative Error. 






N

erimental
x

erimental
x

prediction
x

N
AARE

1 exp

exp1

                                                
       Where: N, here, is the number of data points. 

                      x is bubble diameter. 
         

Bp       :   Back Propagation.  
 

MAE   :  Mean absolute error. 

Max Abs Error :  Maximum absolute error. 

Min Abs Error   : Minimum absolute error. 

MLFF   : Multilayered  FeedForward  Network. 

MLPs    : Multi-layer perceptron. 
 ANN    : Artificial Neural Network. 

 d b        :  Diameter of bubble(m). 

MSE       : Mean square error                    

                  MSE = 

])([
2

1 2p
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p
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p
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     Where p is the number of patterns in training set  

                 k  is the number of iterations. 

                

p
kd

is the desired output.         

                

p
ko

 is the actual output.                      

NMSE     :  Normalized mean square error defined as: 
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          Where P=No. output PEs 

                     N=No. exemplars in the data set 

                     MSE= Mean square error. 

                     dij= Desired output for exemplar I at PEs j. 

PEs    :   Processing elements (neurons). 

R       : The correlation coefficient 
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   x experimental: Bubble diameter mean of experimental 

points. 

    x prediction : Bubble diameter mean for prediction 

points. 



Nada Sadoon Ahmed zeki 

 

7 
IJCPE Vol.10 No.1 (2009) 

 

References 

 

1. Akhtar A., Pareek V., and Tad´e M., 2007 “CFD 

Simulations for Continuous Flow of Bubbles 
through Gas-Liquid Columns: Application of 

VOF Method” Chemical Product and Process 

Modeling Vol. 2, Iss. 1, Art. 9. 

2. Al-Hemiri A., and Ahmedzeki  N., 2008 “ 

Prediction of heat transfer coefficient in bubble 

columns using an Artificial Neural Network” 

International J. Chem. Reactor >Eng.,vol.,6, 

A72. 

3. Bahavraju,S.M.,  .W.F.Russel , and H.W. 

Blanch, 1978, “ The design of gas sparged 

devices for viscous liquid systems” AICHE J., 

24, 454. (cited in Kantarci et al 2005). 

4. Behkish A.,et al ,2005, “ Prediction of the Gas 

Holdup in Industrial-Scale Bubble Columns and 

Slurry Bubble Column Reactors Using Back-

Propagation Neural Networks, 

J.Int.Chem.Eng.Vol.3. 

5. Bhat N., and McAvoy T.J.,1990 “ Use of neural 

nets for dynamic modeling and control of 

chemical process system”Computer Chem.Eng. 
Vol.14,No.4/5,pp.573-583. 

6. Cai Sh., Toral H., Qiu J., Archer J.S., 1994, 

“Network based objective flow regime 

identification in air-water system two phase 

flow”, Can.J.Chem.Eng.,Vol. 72, June. 

7. Deckwer WD., and Schumpe A., 1993 

“Improved tools for bubble column reactor 

design and scale up” Chem. Eng. Sci.48, 889-

911. 

8. Degaleesan, S.,M. Dudukovic 

andY.Pan,2001"Experimental Study of Gas- 

Induced Liquid-Flow Structures in Bubble 

Columns," AIChE J., Vol. 47, No. 9, pp.1913-

1931. (Cited in Akhtar 2007) 

9. Hillmer G., 1993, PhD Thesis ,University 

Erlangen-Nurnberg. 

10. Illuta  I., Grandjean and Larrachi F., 2002 “ 

Hydrodynamics of trickle –flow reactors: 

updated slip functions for the slit models” 

Chem. Eng. Res.Des. 80, (A2),195. 
11. Kantarci, N., Borak, F., Ulgen, K.O.,2005, 

“Bubble column reactors.” Process Biochem. 40, 

2263-2283. 

12. Koide  K., hirahara T., and Kubota H.,  1966, 

Kagaku Kogaku 30, p. 712. 

13. Kumar A.,and  Degaleesan T., LA Ddhacs, and 

H., Hoeischer,1976, “ Bubble   

swarm Characterstics” Cand. J. Chem. Eng. 

vol.54.  

 

 

14. Kumar R., Kuloor NR. 1970 “ the formation of 

bubbles and drops” Adv. Chem. Eng., 8, 256-

368. 

15. Leibson I., Halcomb EG., Cacosco AG and 

Jamic JJ.,  1956 “ Rate of flow and mechanisms 

of  bubble formation from single submerged 

orifices. AICHE J., 2(3),296. 

16. Lendaris, G., (2004) “Supervised learning in 

ANN from introduction to artificial 

intelligence”, New York, April 7. 
17. Leonard, J., and Kramer, M.A., (1990) 

“Improvement of the back-propagation 

algorithm for training neural networks”, Comp. 

Chem. Eng, 14, 337-341. 

18. Lippmann, R.P., (1987) “An introduction to 

computing with neural nets”, IEEE Magazine, 

April, pp.4-22. 

19. MATLAB, Version 7, June 2003, “Neural 

network toolbox”  

20. Mewes D., and Wiemann D.,2004, “ Two phase 

flow with mass transfer in bubble columns” 

Chem. Eng. Tech. 26,pp.862-868. 

21. Miayhara T., Matsuba Y., and Takahashi.,1983 “ 

The size of bubbles generated from perforated 

plates” International Chem. Eng. J., vol. 23, 

No.3. 

22. Miller DN., 1974 “ Scale up of agitated vessels 

gas-liquid mass transfer.” AICHE J., 20,445. 

23. Moo-Young  M., and Blanch  HW.,1981 “ 

Design of biochemical reactors”  Adv.Biochem. 
Eng. 19,1-69. 

24. Piche, S.,Larachi F., and Grandjean A., 2001 

“Improved liquid hold up correlation for 

randomly packed towers” Chem. Eng. Res.Des. 

79,(A1),71.(Cited in Shaikh and Al-Dahhan 

2003). 

25. Shah Y.T., Joseph, S., Smith, D.N., Ruether, 

J.A., 1985,“Two-Bubble Class Model for 

Churn- Turbulent Bubble-Column Reactor,” 

Industrial & Engineering Chemistry Process 

Design and Development, Vol. 24, pp. 1096-

1104. 

26. Shaikh, A., Al-Dahhan, M., 2003,“Development 

of an Artificial Neural Network Correlation for 

Prediction of Overall Gas Holdup in Bubble 

Column Reactors”, Chemical   Engineering and 

Processing, Vol. 42, pp. 599-610. 

27. Towell G., Strand B., and Ackerman,GH., 

AICHE I. Chem.E. Sump. Ser.No. 10,97. 

28. Van den Hangel E. I.V., Deen N.G., and Kuipers 
J.A.M., 2005, “Application of coalescence and 

breakup models in a discrete bubble model for 

bubble columns” Ind.Chem.Eng.Res.,44, 

pp.5233-5245. 



Prediction of bubble size in Bubble columns using 

 

8 
IJCPE Vol.10 No.1 (2009) 

 

29. Van Krevelen  DW.,and Hoftijzer P., 1950, 

Chem.Eng. Prog., 46, 29. 

30. Tadakiet T., and Maeda S., 1963 ,Kagaku 

Kogaku, 27, p. 402. (cited in Miayhara !983). 

31. Towell G.D., Strand B S., and Ackerman GH., 

1965, AICHE., I. Chem., Symp.Ser. No.10,97. 

 

 

 
 
 

  فٍ الابزاج انفقاػُت َاسخؼمالاثنخىبؤ بقطز انفقاعا
  انذكُتصطىاػُت انشبكت الا

 
. انؼزاق/ بغذاد / قسم انهىذست انكُمُاوَت / جامؼت بغذاد كهُت انهىذست / وذي سؼذون احمذ سكٍ 

 
: الخلاصة

 

َىجذ فٍ الادبُاث انمىشىرة ػذد مه انمىدَلاث انزَاضُت  انخٍ حسخؼمم نهخىبؤ بقطز انفقاػاث فٍ ػمىد انفقاػاث ونكه حفشم 
( 230بحذود  ) مه انمؼهىماث ونهذا وبالاسخىاد انً ػذد. نظزوف انمخخهفتاهذي انمىدَلاث ػىذ حطبُقها نمذي واسغ مه 

جمؼج مه الادبُاث انمىشىرة، حم انحصىل ػهً مىدَم نقطز انفقاػت فٍ انمىطقت انمخجاوست نهبزج انفقاػٍ باسخؼمال انشبكت 
حم اوخخاب مجمىػت ػىامم مؤثزة  وحم حصىُفها انً سخت مجامُغ نغزض اسخؼمانها كمذخلاث انً . الاصطىاػُت انذكُت

. سزػت انغاس وقطز انؼمىد وقطز انثقىب  وكثافت انسائم ونشوجت انسائم وانشذ انسطحٍ نهسائم: هذي انؼىامم هٍ . انشبكت
نقذ حم انمقاروت مغ %. 92.2 ومؼامم ارحباط 7.3 حساوٌ AARE%نقذ اثبج انخحهُم الاحصائٍ ان نهمىدَم وسبت انخطا 

 فٍ انخبؤء بقطز انفقاػاث نمذي واسغ مه انظزوف ANN مىدَلاث مىخخبت فٍ الادبُاث وحبُه بىضىح وجاح شبكت ال
 .انخشغبهُت

 

 


