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Abstract
An application of neural network technique was introduced in modeling the point fficiency of sieve tray, based on a
databankofaround33l datapointscollectedfromtheopenliterature.Twomodelsproposed,usingback-propagation
algorithm, thefirst model network consists: volumetric liquidJlow rate (QL), Ffoctorfor gas (FS), liquid density (pL),
gas density (pg), liquidviscosity (pL), gas viscosity (pg), hole diameter (dH), weir hei7ht (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds numberfor liquid (ReL), Reynolds numberfor gas through hole (Reg), ratio of weir
height to hole diqmeter (hw/dH), ratio of pressure of process to atmosphere pressure (P/Pa), Weber number (lTe).
Statistical analysis showed that the proposed models have an average absolute relative enor (AARE) of 9.3% and
standard deviation (SD) of 9.7%forfirst model, AARE of 9.35% and SD of 10.5%for second model and AARE of 9.8%
and SD of 7.5%for the third model.
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Introduction
Perforated trays have been used for many years for liquid
-gas contacting in commercial distillation or absorption
columns. Perforated trays came in widespread use, in the
1950-1960 period, because columns provided with them
were shown to have (l) :

r Higher throughput compared with those
provided with bubble-cap trays.

. Ability to handle suspended solid particles (with
suitable hole size), flushing them down from
tray to tray.

o Compactness especially
applications.

o Satisfactory operation range, typically from 50-
120 percent ofdesign capacity.

r Low pressure drop, so they are preferable for
vacuum applications. Maximum pressure drop
for vacuum distillation usually ranges from 4 to
8 cm of liquid.

o Lower cost in comparison with bubble-cup tray.
The relative cost will depend on the material of
construction used; for mild steel the ratios
bubble-cap : valve : sieve are 3.0 : 1.5 : 1.0.

For these reasons, sieve trays are cheapest and
satisfactory for most applications. However, valve trays
should be considered ifthe specified turndown ratio can
not be met with sieve trays. Bubble-cap trays should be
considered when very low gas rates have to be handled
and positive liquid seal is essential at all flow rates.

Tray efficiency
The designer is concemed with real contacting stages; not
the theoretical equilibrium stage assumed for
convenience in the mathematical analysis of multistage
processes.
Equilibrium will rarely be attained in a real stage.
concept of a stage efficiency is used to link
performance of practical ._contacting stages to
theoretical equi libri um stage(' ).
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Three principal definitions ofefficiency are used:
l. Murphree plate efficiency, defined in terms of the
vapour compositions by:

D  -  Y n  - Y n - t
D m V  -

Ye -  Yn- t
. . . . . .  ( l )

where ye is the composition of the vapour that would
be in equilibrium with the liquid leaving the plate. The
Murphree plate efficiency is the ratio of the actual
separation achieved to that which would be achieved in
an equilibrium stage ( see fig. l) . In this definition of
efficiency the liquid and the vapour stream are taken to
be perfectly mixed; the compositions in equation ( I ) are
the average composition values for the streams.
2. Point efficiency (Murphree point efficiency). If the
vapor and liquid compositions are taken at a point on the
plate, equation I gives the local or point efficiency,(Eo).
3. Overall column efficiency. This is sometimes
confusingly referred to as the overall Plate efficiency.

, _ Number of ideal stage'o  =T Q)

An estimate of the overall column efficiency will be
needed when the design method used gives an estimate of
the number of ideal stages required for the separation.
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Fig. I Plate effrciency

In some methods, the Murphree plate efficiencies can
be incorporated into the procedure for calculating the
number of stages and the number of real stages
determined directly.
For the idealized situation where the operating and
equilibrium lines are straight, the over all column
efficiency and the Murphree plate efficiency are related
by an equation derived by Lewis (1936):

logfl + E.v (Y!- - '
ao=# (3 )

,og( 
, 

)

Where z = slope of the equil ibriurn Lir,.,
Y = molar flow rate of the vapor,
I = molar flow rate of the liquid.

Feedforwardo Back-Propagati o r

The feed forward, back-propa3.,r.i,
developed in the early 19701s by
sources. This independent io-devel r,
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Cunently, this synergisticaii;.'
propagation architecture is the rr,,
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applications. This architecture ll
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training methods. Its greatest : l
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The typical back-propagation ncl
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Fig. 2An Example Feed fcrr
Netv.'tr

Training a Back-Propagatio ;,
The conventional algorithm rrs,
the Bp algorithm, which is an ir

-propagation

rring a MLFF is
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designed to minimize the mean-squared error between the
desired output lld the actual output for a particular input
to the network (2).

Two leaming factors that significantly afFect convergence
speed as well as accomplish avoiding local minima, are
the leaming rate and momentum.
The learning rate (r1) determines the portion of weight
needed to be adjusted. However, the optimum value of 11
depends on the problem. Even though as small leaming
rate guarantees a true gradient descent, it slows down the
network convergence process. Ifthe chosen value ofq is
too large for the error value, the search path will oscillate
about the ideal path and converges more slowly than a
direct descent. The momentum (cr) determines the
fraction of the previous weight adjustment that is added
to current weight adjustment. It accelerates the network
convergence process. During the training process, the
leaming rate and the momentum bring the network out of
its local minima, and accelerate the convergence of the
network.The algorithm of the error backlpropagation
training is given in the Appendix

Computer Simulation Results
Collection of Data
The first step in neural network modeling is the collection
ofdata. The data are necessaryto train the network and to
estimate its ability to generalize. In this model about 331
experimental points have been collected to predict sieve
tray efficiency. The data were divided into training and
test sets: the neural network was trained on B5%o (2g0
points) ofthe data and tested onl5%o (51 points). Table I
gives the detailed listing of data used for the present
work.

The ANN structure is determined by trial and error. For
the first model it consists often input neurons in the input
layer, twenty three neurons in the hidden layer and one
neuron in the output layer, for second case ii consists of
seven neurons in the input layer, thirteen neurons in the
hidden layer and one neuron in the output layer. Then the
networks were trained with back-propagation algorithm
and the weights and biases matrices were calculated. The
best ANN models for the two cases are shown in tables
(2) and (3).

Table 1 Details of data bank used for the work
No.
of
data

System
Author

J J i butane/n butane
at2758Kpa

Sakata &Yangil') (1979)

35 i butane/n butane
at 2068Kpa

Sakata &Yangitit e979)

t 7 i butane/n butane
at l138Kpa

Garcia & Fair
(2000)

21 i butane/n butane
at l l3SKpa

Yangi &Sakata(*' (1932)

t 9 Cyclohexane/n
heptane

at l65Kpa

Garcia & FairP'
(2000)

22 Cyclohexane/n
heptane

at l65Kpa

Yangi & Sakata(u, (1982)

8 Cyclohexane/n
heptane

at4l4Kpa

Garcia & Fair('/
(2000)

l 8 Cyclohexane/n
heptane

at l65Kpa

Sakata&Yangi(', (1979)

l 8 Air/water
at l0l.4Kpa

Nutter("/
(re72)

l 5 Cyclohexane/n
heptane
at Kpa

Yangi & Sakata(*, (1982)

t 8 Ortho/paraxylenes
at2.l3Kpa

Bennett & Agrawllt')
(1e83)

l 8 Methyl isobutyl
keton/water
at l0l.4Kpa

Rush & Stirba(o'
(res7)

t 3 2-propanol/water
l3.3Kpa

Bennett & Agrawal(',
(1e83)

l 0 Ethylene
glycol/water

at6.7Kpa

Garcia & Fair("
(2000)

l l n-octanoVn-
decanol

at l.3Koa

Bennett & Agrawal\')
(1e83)

Air/water
at 101.4Kpa

:Harada & Adachi(',
(re64)

Air/water
at l0l.4Kpa Muhanad.A.R.Hassan(r o)

(2005)

IJCPE Vol.10 No.4 (December 2009) 59



able 2 finding the best ANN model for case I
Structure MSE No.of

iteration
Leaming
rate

Momentum
coefficient

Transfbr
function

u0-23-ll 0.001 2497 0.8 0.9 tan
siemoid

Prediction ofthe Point

D.Z

0.1

Sieve Tray Using Artificial Neural Network

Table 3 finding the best ANN model for

Test of the Proposed ANNs
The ANN models were tested using another set of data to
show the accuracy of the network for predicting point
efficiency of sieve tray. The two models were used to
generate (51) new data values each, but in the case ofthe
second model, the data values were as dimensionless
groups.
The comparison between experimental and predicted
efficiency for the two cases are plotted in Figures (3) and
(4).

Discussion
This work used high performance algorithm presented by
back-propagation, which uses the (trainlm) function,
trainlm can train any network as long as its weight, net
input, and transfer functions have derivative functions.
Trainlm is the default training function because it is very
fast, but it requires a lot of memory to run. Training stope
when any ofthese conditions occur:

r The maximum number of epochs (repetitions) is
reached.

o The maximum amount of time has been exceeded-
r Performance has beeri minimized to the goal.
e The performance gradient falls below mingrad.

The learning rate is constant throughout fiaining, ifit ir
set too high, the algorithm may oscillate and becom
unstable. But if it is set too small, the algorithm will ta&e
too long to converge. The learning rate could be changed il
needed, and in our study a learning rate of 0.8 for case I ,
0.75 for case 2 and 0.65 for case 3. The selection of '

number of hidden layer neuron is very important d
troublesome. If the number of the hidden layer neuron b
fewer, the ANN cannot receive all necessary information d
the modeling system and has less tolerance on faults, so 

'' -

it gives wrong output. On the contrary, the ANN may caus
a phenomenon called "over fitting". In this study, the finl
network consisted of23 neuron in the hidden layer and tb
targeted enor (MSE=0.001) was achieved, while the secd
network consisted of 30 neurons but gave, somelrqr
slightly larger error (MSE:0.002). However' bC
correlations represented the data quite well as can be
from the values of the standard deviation (SD) and
average absolute relative enor (AARE).

Conclusions
It has been demonstrated that the optimal model is a
network with one hidden layer. The application ofANN
to the sieve tray point efficiency indicated the coming of,
a flexible tool for engineers.
A neural network model has been developed for the
prediction ofthe sieve-tray point efficiency. The purely
empirical model was tested on data that were not used to
train the neural network and yielded very accurate
predictions for the two cases considered.

o Case l: the model, Eo c F., el, pe, pr_, Fe, Fr,
o, h*, dg, P has a structure ofl0-23-l with
AARE of 9.3%o.

o Case 2: the model, Eo € F, Rep, Rer, We,
(h*idrJ, @/P") has a struature of 6-30-1 with
AARE of 9.35o/o.

0.9

0.8

o

7
&

@

o
o o o

Y!:{

0 0.1 8.2 03 0.1 0.5 0.6 0.7 0.8 0.9 1
point efficiency Experimenial

Fig. (3) Comparison between experimental and prediction
point efficiency for case (l) in testing set.

Fig. (a) Comparison between experimental and prediction
Point efficiency for case 2 in testing set.
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Momentum
coeflicient
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[6-30-1] 0.002 u423 0.75 0.9 tan
sismoid
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Nomenclature
b = Bias.

d: soy" diameter.

Eyy: Murphree gas-phase tray efficiency.

Ep= Point efficiency.
E6 = Overall column efficiency.

f = The activation function.

f' : The derivation of the activation function.

F = Flow factor: (V/\)(p/p)o5.
Fr: F factor base on superficial velocity

of gas : Vr(pr)o t , (cm/s)(g/cm3)o 5

hj : The actual output of hidden neuron j.

h*= Outlet weir height , cm.
L = Liquid flow rate, mole/s.
m: Slope of equilibrium line.

Op:The actual output of output neuron k.

Qg : Volumetric gas flow rate, cm3/s.
QL: Volumetric liquid flow rate, cm3/s.
Re*: Reynolds number for gas =(prurdg/p).
Re1= Reynolds number for liquid :(pL uL dpl)
V :Gas flow rate, mole/s.

Wij = Synaptic weights between input and hidden

Neurons.

W 
iO 

: Synaptic weight between hidden and output

neuron.
We: Weber number:(ApV*2 dn/o;.
x = Liquid concentration (mole fraction).
y_: Gas concentration (mole fraction).
y n : Mole fraction that would be in the equilibrium with
liquid leaving tray.
l"= Average mole fraction in the vapor leaving the tray.

Greek Symbols

5 p: tt 
" 

error term.

l,: Stripping factor =(m V/L).
p* =Gas viscosity, g/cm.s.
p1: Liquid viscosity , g/cm.s .
pe: Gas density , g/cm'. _
p1: Liquid density ,g/cm'.
o : Surface tension, g/s2.

Abbreviations
AARE: Average Absolute Relative Error.
ANN : Artificial Neural Network.
BP = Back Propagation.
MLFF: Multi-Layer Feed Forward.
MSE : Mean Square Error.
S.D = Standard Deviation.
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Appedix
Stepl: initialize network weight values.
Step2: sum weighted input and apply activation
function to compute output of hidden layer.

Where
h;: The actual output of hidden neuron j for

input signals X.
X1: Input signal of input neuron (i).
Wq: Synaptic weights between input neuron hidden

neuronj and i.
/: The activation function.

Step3: sum weighted output of hidden layer and apply
activation function to compute output of output layer.

r _  Io t  =  f l Z n i w * l  ( i D
L j I

is
E

!E

x

E

d

E

tr
I

e
l

I

I

I

(Dh j= r l+xiwij)
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WhEre
Or: The actual output ofoutput neuron k.
W*: Synaptic weight between hidden neuron j

and output neuron k.

Step4: compute back propagation error.

4 =(dr-oS7(2n,w,r) (iiD
\ j  . l

where

f 
' 

:The derivative of the activation function.

d1: The desired ofoutput neuron k.

Step5: calculate weight correction term.
LW1,(n) = q at h, + d\Wit (n -l) (iv)

Step6: sums delta input for each hidden unit and calculate
elTor term.

61=ldr,wirf(>r,rr) (v)

StepT: calculate weight correction term.
Lw,1(n\=q6,x,+aLWr(n-r) (vi)

StepS: update weights.

wiob*t)--wioD+L\{n)

W,,(n+I) =Wr(r)* NU,@) (viii)

Step9: repeat step2 for given number oferror.

MSE=ll>Zrf -of ,"1 (ix)
zpl7-o .l

Where p: The number of pattems in the
training set.

Stepl0: END

(viD
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