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Abstract

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling
operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which
make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural
network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data
extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM),
hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were
involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their
accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted
values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost

from ANN method when compared to the raw data.
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1- Introduction

During the last decades, drilling operations have
witnessed significant progress to improve down hole
drilling techniques. Drilling optimization techniques have
been extensively used to minimize drilling operation costs
by reducing nonproductive time [1].

At the present time, there is no representative
mathematical relationship between rate of penetration and
drilling parameters due to large number of uncertain
drilling variables that influenced the drilling rate and also
the complex and nonlinearity relationship between
them [2].

Rate of penetration is affected by two types of
parameters, which are controllable and uncontrollable
parameters .The controllable parameters are related to
mechanical (WOB, RPM), hydraulic, drilling fluid
properties, well configuration, and type of bit, while the
uncontrollable parameters are related to formation
properties [3].

During the last decades, drilling optimization techniques
adopted new methods for solving drilling optimization
problems.

These new methods include Artificial Intelligence (Al)
such as Genetic Algorithm (GA), and Artificial Neural
Network (ANN) methods.

M.H.Babhari et al (2008) applied GA method to calculate
constant coefficients of Bourgoyne and Youngs ROP
model for solving problems where the model had proven
to be meaningless in some cases . The results of simulation
had proven to be proficient to determine that coefficients
of Bourgone and Young ROP model [4].

Jahanbakhshi,R,et al.(2012) developed an ANN model
to investigates and predict the ROP in one of Southern
Iran's oil field, by considering type of formation |,
mechanical properties of rock, hydraulics factors, bit
type, and mud properties. The results showed the
efficiency of ANN model for field application, and for
drilling planning for any oil and gas wells in the related
field [5].

M.Bataee et al (2011) developed an ANN model to
determine complex relationship  between drilling
variables. Their model predicted the exact penetration
rate, optimization of drilling parameters, time of the
drilling of wells, and lowering the drilling cost for future
wells [6].

In this study, a new model of rate of penetration based
on the Artificial Neural network (ANN) is build using the
MATLAB programming computer.

Results of predicted model showed good convergence
when compared with others model and a good estimation
of drilling cost.
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2- Artificial Neural Network Approach

Artificial Neural Network are powerful techniques used
in modeling complex systems that seeks to simulate
human brain behavior by treatment of data on the basis of
trial and error. ANN has been identified as tool to

determine and optimize complicated  nonlinear
relationships between parameters [6].
In petroleum industry, Artificial Neural Networks

(ANNs) has accepted a wide applications such as
prediction of hole pressure, fracture pressure, pore
pressure, and the instability of wellbore.

ANN is massively parallel —distributed treatment units
called neurons. These simple neurons have specific
performance characteristics in common with biological
neurons.

Artificial Neural network is usually consisted of
multilayers. These layers are input layer, one or more
hidden layers, and one output layer. The number of input
neurons is usually corresponds to the number of
parameters that are being presented to the network as
inputs, also, the same thing for the output layer.

For the hidden layers and neurons, their number is
unknown and can be unlimited.

The neurons are arranged and organized in different
forms depending on the type of the network
(architecture).The layers of neurons are linked by the
connection weight, which then formed the ANN. The
most common ANN architecture is the feed forward with
back propagation artificial neural network, in which the
information will propagate in one direction from input to
output [7]. The structure or topology of feed forward
ANN is shown in Fig. 1.

The first step in ANN modeling is the training or
learning process. The training process is a procedure to
estimate the weights and thresholds by using an
appropriate algorithm (activation function).

Each neuron has different activation functions, which
are used to process data. Generally, the data is divided
randomly in three sets, training set, validation set, and
testing set. The validation set is used to stop training
process to prevent the network from over fitting the data.

Fig. 1. Structure of ANN model

3- Region of Study

In order to build the model, field data from AL-Halfaya
oil field was extracted from mud logging unit and sonic
log. AL-Halfaya oilfield is located in Missan province in
the southeast of Iraq, 35 kilometers southeast to Amara
city.

The data used in this study are provided by Petro China
Company Limited (from Contractor Bohai Mudlogging),
that working in AL-Halfaya oil field. Modeling data are
extracted from five vertical wells called (HF004-M272,
HF051-N051, HF109- N109, HF195-N195and HF004-
N004) for five formation called (fars formation, Kirkuk
formation, Hartha formation, Mishraf formation and
Nahar Umar formation). Each formation represented
dataset.

For ANN modeling purpose, the ROP was considered
as dependent variable, while the (WOB, RPM, HSI and
DT) were considered as independent variable. The
interval transit time (DT) is the reciprocal of sonic speed
in the rock and express in (usec/ft).

Five data sets are considered in the modeling which
represented five formations. These parameters represented
the mechanical, hydraulic and formation strength, which
are the most important parameters. Table 1 depicts the
final input parameters for ANN modeling.

Table 1. Input parameters for ANN modeling

Parameter Unit
Weight on Bit ton
Rotary Speed rpm
Hydraulic HSI
Transit Time Msec™

Before the input data is applied to the network, it should
processed by normalization function .To scale the data
for each input variable, a known method called min-max
normalization method, which linearly scales the data to
values between 0 and 1 using the following equation:

Xmin — max = (X — Xmin) / (Xmax — Xmin) (D)

Where X is the value of the parameter to be
noramalized, Xpin and Xmax are minimum and maximum
values respectively. With this method, the output of
network will always falls into a normalized range.

4- Training the Network

It’s well known that using of powerful nonlinear
regression models is associated with the possibility of
over fitting data. In order to obtain the optimal size of the
neural network model, a heuristic approach was applied.

Here, there is possibility to increase the number of
hidden layers to two or three if the results with one are
still not adequate.
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However, increasing the numbers of neurons in the
hidden layers or increasing the number of hidden layers
will increase the power of the network model, but will
required more computation processes and lead to produce
over fitting [7].

In order to avoid over fitting data during the developed
stage of the model, the field data of five sets was divided
into three subsets which are training subset, validation
subset, and testing subset. The set of training is used to
calibrate the model. It is used for calculating the gradient
and updating the network weights and biases. The set of
validation is used to verification the generalization of the
developed model during the learning phase.

The validation errors will decrease normally during the
initial phase of training, which also the training set error.
The set of testing is used to examine the final calculation
of the network and compare different models. For the
model building process, the available dataset consisted of
85% for the pure network leaning process, and 15% for
validation.

5- Results of Simulation

While developing ANN model, the three layered
network showed the lowest network error. Also, different
structures in the three layered have been tested as well
and the comparison between these structure showed that
the three layered with 20 hidden neurons in the hidden
layer is the best model. As it shown in the Fig. 1, a three
layer feed forward network which use activation function
for the hidden layer and pure line for output layer and full
connection topology between layers is used. This
algorithm can approximate any nonlinear continuous
function to an arbitrary accuracy [7].

The performance of the ANN model can be evaluated on
the basis of efficiency coefficient(R). Table 2 gives the R
values for the five data sets from A to E as follows:

Table 2. Results of network model for five data sets in

term of R
Dataset No.of Data Training
R
A 1800 0.91261
B 550 0.96893
C 374 0.83361
D 469 0.94061
E 397 0.92163

Performance of the best ANN model for each data sets
are shown in Fig. 2 through Fig. 6.

As it seen in all figures, an increase in number of
training attempts would accompany by an improvement in
performance of ANN model due to reduction of mean
square error (mse) values and thereby could obtained
good predicted values of rate of penetration (ROP).
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Best Training Performance is 9.9989¢-08 at epoch 428
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Fig. 6. Neural network training performance for dataset E

The regression analysis of ANN model for five data sets
(A, B, C, D, and E) could be seen in Fig. 7 through Fig.
11.

These figures show the regression plots of predicted rate
of penetration against field data. The efficiency
coefficient values (R) for training process shows excellent
convergence between the predicted and actual values of
ROP for all data sets. Also each data set has special
regression equation as shows on y-axis.
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Fig. 8. Neural network regression for dataset B
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Fig. 10. Neural network regression for dataset D
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Fig. 11. Neural network Regression for Dataset E

Fig. 12 through Fig. 16 shows the matching between the
predicted and measured data in term of ROP for the five
datasets.

The output of the ANN model shows a good agreement
matching at wide range of depth with the raw data.
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model of dataset E

6- Estimation of Drilling Cost

As mentioned earlier, the objective of drilling
optimization is to reduce the drilling operation cost. In
this section the proposed ANN model was tested again by
estimation of drilling cost for certain well (HF004) and
specific depth (from depth 147 m t01390 m) for each
dataset. The following information in Table 3 is obtained
from field operating company.

Table 3. Data of cost estimation

Cost of Rig, $/d 30000
Cost of Bit,$ 5000
Rotating time,hr 16
Trip time,hr 15
Connection time,min 1
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The estimation of cost of drilled footage was done with
following equation:

cb+cr(Tr+Tt+Tc)

cpm = L )
Where cpm is cost per meter, cb is bit cost, cr is rig
cost, Tr is rotation time, Tt is trip time, Tc is connection
time, and f is the number of drilled footages.
The performance of proposed ANN model in term of
estimation of drilled footage is presented in Fig. 17
through Fig. 21 for five datasets.
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Fig. 17. Comparison between predicted drilled cost by
ANN model and actual data for data set A
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Fig. 18. Comparison between predicted drilled cost by
ANN model and actual data for data set B
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Fig. 21. Comparison between predicted drilled cost by
ANN model and actual data for data set E

All these results demonstrated that the cost of drilled
footage predicted by the proposed ANN model has
accurate drilled cost and matched concisely with the
actual field data. So, these calculations support the
accuracy of the neural network model.
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