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Abstract

The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the
cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious
problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings .Ten wells in
the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the
selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided.
The average rate of penetration and average dynamic elastic properties for the studied wells was determined and listed with depth.
Laboratory measurements were conducted on core samples selected from two wells from the studied wells. Ultrasonic device was
used to measure the transit time of compressional and shear waves and to compare these results with log records. The reason behind
that is to check the accuracy of the Greenberg-Castagna equation that was used to estimate the shear wave in order to calculate
dynamic elastic properties. The model was built using Artificial Neural Network (ANN) to predict the rate of penetration in Mishrif
formation in the Nasiriya oil field for the selected wells. The results obtained from the model were compared with the provided rate

of penetration from the field and the Mean Square Error (MSE) of the model was 3.58 *10°.
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1- Introduction

Oil field developments are subject to drill wells in
economical manners. For that reason, future management
of oil field will face new obstacles to reduce overall costs,
increase performance and reduce the probability of
encountering problems[1]. Drilling for energy search
from the ground has shown considerable technological
advances in the recent years[2]. Different methods from
different disciplines are being used now in drilling
activities in order to obtain a safe and cost-effective well
construction[3].

The first well drilled in a new field (a wildcat well)
generally will have the highest cost. With increasing
familiarity to the area optimized could be implemented in
decreasing costs of each subsequent well to be drilled
until a point is reached at which there is no more
significant improvement.

The relationship among drilling parameters are
complex, so the efforts is to determine what combination
of operating conditions result in minimum cost
drilling[4].

The rate of penetration is important in drilling the wells
that are required in the development process of the oil
field. It is likely to finish the well as soon as possible
without problems [5].

So in order to implement the optimization concept for
drilling parameters and reducing the cost of drilling, data
from the drilled wells in areas that have the same
geological properties of the area that is going to be drilled
and nearby wells are gathered and analyzed to start
drilling the well at the lowest cost as possible[6].

The drilling process is a complex process including
many factors some of them can be adjusted at a time to
enhance the drilling process and they are changeable with
time, these parameters called controllable parameters, for
instance, rotary speed and weight on bit.

The other parameters are difficult to control like depth
and formation pressure. These parameters called
uncontrollable parameters. Predicting penetration rate
includes some difficulties because it relies on both the
controllable and uncontrollable parameters. Many
mathematical models have been proposed by several
researchers to predict the penetration rate and to
investigate the relationship between different drilling
parameters and the penetration rate. Teale [7] presented
the concept of mechanical specific energy and the
equation concluded in term of the operational parameters
as follows:

MSE = WOB x [i_‘_ 13.33*;4*1\1] @

Ab db*ROP
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Where MSE is the mechanical specific energy, WOB is
the weight on bit, N is the rotary speed, Ab is the borehole
area, p is bit specific coefficient of sliding friction and

Bourgoyne and young [8] .ROP is the penetration rate
developed a model based on the multiple regression
analysis of the field data gathered. The model describes
the ROP as a function of formation strength, formation
compaction, formation depth, differential pressure, bit
diameter, bit weight, bit wear, and bit hydraulics. The
equation for predicting the penetration rate takes into

:account various drilling parameters as follows

ROP =exp (al + ¥}, ax (2)

Where a; to ag are constants that estimated by multiple
linear regression. Hareland and Motahhari [9] developed a
model for PDC bit ROP model based on Hareland

assuming 100% cleaning efficiency:

ROP = w, (£ ®)

db o

Where: G is a coefficient determined based on bit and
blade geometry. W, is the wear function calibrating ROP
values for a worn bit. ¢ Unconfined rock strength. And
it’s a function of WOB, RPM, and rock strength at the
drilling depth. All the previous models to predict ROP
were based on operational parameters and rock strength
and did not include the dynamic elastic properties of
rocks. In this research, the model focuses on this area to
relate these properties with ROP.  Artificial neural
network design was inspired by the human brain. ANN is
applied in different fields, for instance, financial services,
biomedical applications, time series prediction. Due to
neural network ability in solving non-linear problems,
they were used widely in petroleum engineering.

Such application of neural network includes bit
selection, reservoir characterization and enhanced oil
recovery (EOR)[10]. The perceptron was introduced by
Rosenblatt[11]. The perceptron receives many inputs
(X1,X2 X3, ....Xy) from all the neurons in the previous
layer. And one output is coming out from it (y).
Moreover, the perceptron has a bias weight denoted
as(wy).

During the training stage, the weights will be changed
continuously. So, it is possible to reduce or to strengthen
some neurons' weight to get different outputs. A linear
combination which is the sum of the product of the weight
of each previous neuron by their inputs and adding to the
summation the bias value as follows:

Y= XloXi-wi+wg €))

Where: (x;) is the output from the previous neuron or
from the input layer, (w;) Is the weight connecting the (
i*") neuron from the previous layer to the (j*) neuron in
the Current layer, (wg) is the bias, (y) is the weighted
sum. After the weighted sum computed, this value should
be entered in a function called activation function (a,)
[12]. This concept is demonstrated in Fig. 1.
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Fig. 1. Concept of the Perceptron with n Inputs and One
Output[12]

The sigmoid function is one type of activation function
which has the shape of the "S" curve. Sigmoid function
sig(z) is sometimes called 'squashing’ function, because it
squashes the input to a value range between (0 and 1).
This function is applied to the weighted sum of the
outputs of the previous neuron to get the input of the
present node [13]. To get the right outputs from the
network we need to train the network in an iterative
process. The network must be fed with a data set that
contains the inputs and the outputs. The output from the
network is called “predicted output”. The output from the
data set is called “desired output” or the “target”. The
predicted outputs are compared with the targets to
estimate the error between the calculated and the actual
output, subsequently, evaluating the performance of the
network, for each iteration the weights are adjusted in
order to get better results (closer to desired outputs). For
this purpose, learning algorithms are used to get the job
done[14].

There are two types of neural networks due to their
learning techniques, supervised and unsupervised. In
supervised neural networks, the output values are known.
And in the case of unsupervised, the output is unknown.
The backpropagation algorithm (BP) and Marquardt-
Levenberg are the most familiar learning algorithms[15].

2-  Aim of This Study

In this study, an intelligent model was developed in
order to be used in rate of penetration prediction based on
bulk modulus, shear modulus and Poisson’s ratio as
inputs. This model was built and developed based on the
data provided from Nasiriya oil field which is the case
study of this paper. Thus, predicting the ROP helps in
speculating drilling cost in the study area.

3- Materials and Methods
3.1. Study Area Description

Nasiriya oil field is located on the Arabian platform in
Dhi-Qar governorate, southern of Iragq, a zone with a
gentle fold. The field is about 38 kilometers northwest the
Nasiriya, west of the Zagros fold belt. The area of the
field is located on an unstable shelf close to the Arab
platform (Mesopotamian zone).
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This zone characterized by the presence of subsurface
anticlines and domes with variable extension. Arabian
shield suffered from erosion that put in a lot of clastic
sediments (Zubair formation). Nasiriya oil field has
reserves in the late cretaceous (Mishrif limestone
formation) and early cretaceous (Yammama limestone
formation). The Mishrif Formation (Cenomanian-Early
Turonian) represents a heterogeneous formation primarily
characterized as organic detrital limestones, capped by
limonitic freshwater limestones. It is thickest in the
Rumaila and Zubair fields (270 m), in the NahrUmr and
Majnoon fields along the Iraq - Iran border it becomes
(435 m) thick. And in Abo Amud field between kut and
Amara it is (380 m) thick. Other isolated occurrences lie
near Kifl (255 m) and Samarra (250 m)[16].

3.2. Data Collection and Research Methodology

The first step in the research methodology is the
selection of wells in the Nasiriya oil field. In this field,
there are two sets of open hole logs for different depth
intervals provided by Schlumberger Company (INOC,
1985; INOC, 2007).

The first one from 1924 m to 2532 m and the other one
from 2528 m to 3430 m. The first set is passed through
Mishrif carbonate formation which is the most important
formation. Whereas, the second set is passed through
Yammama carbonate formation which is one of the
deepest reservoirs in the NS oil field. NS-1, NS-3, NS-4,
NS-5, NS- 9, NS-15, NS-16, NS-18, NS-19, and NS-21
are selected for this study. Five exploratory wells drilled
in the Nasiriya oil field with in the period 1978 -1987. All
the picked wells are production wells and scattered to
overlay wide area of the Nasiriya oil field.

This distribution gives a high stiffness in the field data.
All logs are present for these wells (INOC, 2007). Core
samples were used in this research. Laboratory
measurements were conducted on the core samples to
compare log reading and lab measurements. James
Instrument V-Meter Mark 1V Ultrasonic device was used
for measuring the compressional waves’ velocities.

The samples dimensions were (1) inch in diameter and
(2) inches in length. After the samples preparation
process, dynamic elastic properties which include bulk
modulus, shear modulus, and Poisson’s ratio are
computed. Then, the data were used to build an intelligent
model using ANN to predict the rate of penetration. The
data set was divided into three categories training, testing
and validation by 70%, 15%, and 15% respectively. The
steps of developing (ANN) model are as follows:

1- Selecting the data: after the dynamic elastic properties
have been calculated by IP software and the rate of
penetration records has been organized and listed with
depth. The data must be analyzed and processed.

2- Building neural network model: the model is built by
selecting properties of the network such as network
topology, training algorithms and minimum accepted
error between predicted and actual.

3- Testing the model: the model was tested by new data
that wasn't used in the training stage and within the
range of training data.

4- Implementing Neural Network

The artificial neural network is used in many
applications to model highly non-linear problems.
Sometimes ANN models fast to build and give accurate
results. The neural network model was built using the
Marquardt-Levenberg training algorithm. Two hidden
layers were used; each layer has twenty hidden neurons
with the sigmoid transfer function for the two hidden
layers. One output layer and a linear transfer function
between the last hidden layer and the output layer. The
dynamic elastic properties (KB, MU, and PR) data from
five wells (NS-1, NS-3, NS-4, NS-5, NS-18) were
averaged and listed with depth. After averaging the data,
they have been arranged in a form that the network
accepts it in order to be used as input data for training the
network. The number of epochs was set to 1000 iteration.
The performance of the neural network model for ROP
prediction should be evaluated. In order to do this
evaluation, a regression analysis between network outputs
(ROP predicted) and actual (ROP) was hired.

Fig. 2 demonstrates regression analysis with a straight
line stand for best regression between the net output (ROP
predicted) and the desired output (ROP actual).
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Fig. 2. Regression for the ROP model at Training,
Validation, and Testing

To get an excellent fit line the slope must be one and the
intercept must be zero.
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Good correlation coefficients (R) were obtained from
the trained network which they were R = [0.96, 0.96,
0.94] during the training, testing and validation stages
respectively. The mean square error between predicted
and desired (ROP) was (3.58*10°%) as shown in Fig. 3.

Best Validation Performance is 3.582e—-05 at epoch 57

Train :
Validation | :
Test :

~ Best

Mean Squared Error (mse)

. . . . .
[a} 10 20 20 40 50
57 Epochs

Fig. 3. Mean Square Error for the Network

5- Results and Discussion

After the clay volume and the type of lithology have
been identified. Shear wave velocity (VS) can be obtained
by using the Greenberg-Castagna model which depends
on the type of formation and clay volume calculations.
Then, Bulk modulus, Shear modulus and Poisson's ratio
are computed and listed against depth for Mishrif
formation of the studied wells. Dynamic elastic properties
were calculated for the ten selected wells. These results
are in agreement with Fjaer et al [17] and Gercek [18].
The Table 1 illustrates the average values of the dynamic
elastic properties for the selected wells. The average
values of (VP/VS) range from (1.87) to (1.91) where the
velocity in (ft/s). These values agree with Pickett [19],
Fadhil [20] and Zinszner and Pellerin [21] results for
(VP/VS) values for limestone. The results of dynamic
elastic properties are shown in Fig. 4 for NS-16.

Laboratory measurements were conducted on samples
of cores taken from NS-3 and NS-18 to measure
compressional and shear waves velocities and to compare
it with the results from the sonic log at the same depth.
The non-destructive ultrasonic test was used to measure
transit time for compressional and shear waves. James
instrument V-meter mark IV device used for these
measurements and it has an advanced microprocessor and
equipped with the S-wave response (shear wave
transducers). The results showed good agreement between
laboratory measurements and log records with maximum
absolute percentage error (APE) is 20% and minimum
(APE) is 1%. Due to convenience between the lab
measurements and the shear waves obtained from
Greenberg-Castagna model. Greenberg-Castagna model
was used to estimate the shear wave velocities curve.

Table 1. Average results for dynamic elastic properties

St.de Std

FM WELL VP/IVS KBgpa v MUgp, ov PR St.dev
NS-1 1.88 23.7 5.7 111 29 0300 0.018
NS-3 1.88 25.8 8.8 120 41 0300 0.014
NS-4 1.87 234 6.0 109 3.0 0299 0.011
% NS-5 1.88 221 6.3 102 27 0301 0.015
15; NS-9 1.90 20.6 8.5 86 40 0305 0017
§ NS-15 1.88 21.1 4.7 98 25 0301 0013
)_%' NS-16 191 20.7 6.4 94 35 0307 0019
g NS-18 1.87 255 8.4 119 37 0299 0.013
NS-19 1.88 24.8 1.7 116 3.6 0300 0.015
NS-21 1.87 27.6 9.0 130 40 0.297  0.009
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Fig. 4. Dynamic elastic properties for Mishrif formation

(NS-16)

Table 1 lists the dynamic elastic properties values for
the studied wells. Highest average value of bulk modulus
was (27.6) GPa from NS-21. The minimum average value
of bulk modulus was (20.6) GPa from NS-9. For the shear
modulus, the minimum average value was (8.6) GPa from
NS-9. The maximum average value was (13) GPa from
NS-21. For the Poisson’s ratio, the values where close
together for the all wells.

The minimum average value was (0.297) from NS-21
and the maximum was (0.307) from NS-16. Standard
deviation gives an idea about how the data are spread out
around the mean (average). Low standard deviation
means that most of the numbers are close to the mean.

Higher standard deviation was obtained from NS-21
with a value of (9) for bulk modulus. In the other hand,
the minimum value of standard deviation was obtained
from NS-15 which was (4.7). The deviation around the
mean was smaller for the shear modulus. Largest
deviation around the mean was (4.1) from NS-21. NS-15
gave low standard deviation around (2.5). In case of
Poisson’s ratio the highest value of standard deviation
was (0.019) which gained from NS-16, while the lowest
value of standard deviation obtained from NS-21 was
(0.009).

The ROP values were supported as discrete points in
drilling reports. Then, linear regression was used to
predict the values of ROP along the depth of interest in all
studied wells.
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The correlation coefficient was (R? = 0.91). Dynamic
elastic properties were plotted against rate of penetration
for the wells (NS-1, NS-3, NS-4, NS-5, and NS-18) as
shown in Fig.5. The bulk modulus is reciprocal of rock
compressibility. So, as the value of this modulus increase,
the rock resistance to penetration also increases. In the
result, if the other operational parameters and rock
properties held constant, low rate of penetration will be
obtained. Fig. 5 does not show a clear trend between bulk
modulus and ROP because of wide range of variety in
bulk modulus. This is due to the heterogeneity of
carbonate reservoirs. For the shear modulus, it’s the rock
resistance for the applied shear force. Its effect was the
same as the effect of bulk modulus. From Fig.5, at the top
of formation where the values of bulk modulus and shear
modulus were at minimum the ROP was at its highest
value. ROP started to decrease as the elastic properties
started to rise up along the depth of interest.

The plot of bulk modulus and shear modulus versus
ROP for the wells (NS-9, NS-15, NS-16, NS-19, and NS-
21) is shown in Fig. Al in Appendix- A

1 2

DEPTH
(M)

3

ROP(FIELD) (M/HRS) KB (GPa)

33893

ROP(ANN) (M/HRS) MU (GPa)

3.95 4.1]3.84 15.47

2000

2100
Fig. 5. Bulk modulus and shear modulus vs average rate
of penetration (NS-1, NS-3, NS-4, NS-5, and NS-18)

Fig. 6 demonstrates the relationship between the
Poisson’s ratio and the rate of penetration for the wells
(NS-1, NS-3, NS-4, NS-5, and NS-18). Poisson’s ratio is
the negative ratio of lateral strain to longitudinal strain.
High Poisson’s ratio means the rock has lateral strain
higher than longitudinal strain.

This means that the rock has more resistance to
penetration process. As shown in Fig. 6, the penetration
rate was highest at the top of the Mishrif formation where
the Poisson’s ratio was at its minimum values.

As moving downward, the ROP started to decrease as
the Poisson’s ratio increased. All curves have large
deflections and non-clear trend.

11

There are a lot of parameters that lead to change in the
ROP. Also, the Poisson’s ratio was plotted against ROP in
Appeendix-A2. The same behavior was obtained for these
wells

1 2

DEPTH
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ROP{ANN) (MHRS)

3.95 4.1
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2100
Fig. 6. Poisson’s ratio vs average rate of penetration (NS-
1, NS-3, NS-4, NS-5, and NS-18)

Fig. 7 shows a plot between ROP from field and the
predicted ROP by the ANN model for the wells (NS-1,
NS-3, NS-4, NS-5 and NS-18).

The data from these wells where used to train and build
the ANN model. Fig. 8 shows the predicted ROP by the
ANN model for the wells (NS-9, NS-15, NS-16, NS-19
and NS-21).
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3.90 PREBICTEPROP NYEHRY AN 15 4.20
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8 2020
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Fig. 7. ROP predicted by ANN model versus ROP actual
(NS-1, NS-3, NS-4, NS-5, and NS-18)
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Fig. 8. ROP predicted by ANN model versus ROP actual
(NS-9, NS-15, NS-16, NS-19, and NS-21)

6- Conclusions

The results did not show strong dependency of ROP on
dynamic elastic properties. Because the rate of penetration
does not depend on the elastic properties only other
properties has direct effect on ROP like rock compressive
strength, porosity, operational parameters, and bit
hydraulics.

As shown in Fig. 5 and Fig. 6, there are large variations
in the values of dynamic elastic properties due to
heterogeneity of carbonate reservoirs. The ROP was
inversely proportional with dynamic elastic properties.
When the values of dynamic elastic properties decrease
the ROP values rise up. A low rate of penetration was
obtained in Mishrif formation which was between (3.7)
and (4.1) m/hrs.

Based on the values of (VP/VS) ratio, the lithology of
Mishref formation was limestone with some shale points
scattered. The ANN model has a mean square error about
3.58*10°. As a result, the model gave close results to the
real data and can be used in (ROP) prediction in similar
area.

Highest average value of bulk modulus in Mishrif
formation was (27.6) GPa estimated from NS-21 while
the lowest average value was (20.6) GPa from NS-9. For
the shear modulus, the highest average value was (13)
GPa observed from well NS-21 and the lowest average
value was (8.6) GPa estimated from well NS-9.

As for the Poisson’s ratio, the highest average value in
the Mishrif formation was (0.307) from well NS-16 and
the lowest average value was (0.297) from well NS-21.
The Bulk modulus showed high distribution of the values
around the mean.
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The highest value of the standard deviation was (9)
obtained from NS-21. In case of shear modulus, the
highest value of standard deviation was (4.1) from NS-3.
For the Poisson’s ratio, the values were close and the
distribution was not major. Highest value of standard
deviation was (0.019) obtained from NS-16. Fig. 7 and
Fig. 8 display the difference between the predicted and
the actual ROP.

Nomenclature

db  Bit diameter
u  Bit specific coefficient of sliding friction
Ab  Borehole area
Coefficient determined based on bit and blade
geometry
N  Rotary speed
o Unconfined rock strength
W, Wear function calibrating ROP values for a

worn bit

Abbreviations

APE Absolute percentage error

ANN Acrtificial Neural Network

BP Backpropagation

KB Bulk modulus

VP Compressional wave

MSE Mean square error

NS Nasiriya

PR Poisson’s ratio

ROP Rate of Penetration

MU Shear modulus

VS Shear wave

St.dev Standard deviation

WOB Weight on Bit
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