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Abstract 

 
   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the 

cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious 

problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings .Ten wells in 

the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the 

selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. 

The average rate of penetration and average dynamic elastic properties for the studied wells was determined and listed with depth. 

Laboratory measurements were conducted on core samples selected from two wells from the studied wells. Ultrasonic device was 

used to measure the transit time of compressional and shear waves and to compare these results with log records. The reason behind 

that is to check the accuracy of the Greenberg-Castagna equation that was used to estimate the shear wave in order to calculate 

dynamic elastic properties. The model was built using Artificial Neural Network (ANN) to predict the rate of penetration in Mishrif 

formation in the Nasiriya oil field for the selected wells. The results obtained from the model were compared with the provided rate 

of penetration from the field and the Mean Square Error (MSE) of the model was 3.58 *10-5. 
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1- Introduction 

 

   Oil field developments are subject to drill wells in 

economical manners. For that reason, future management 

of oil field will face new obstacles to reduce overall costs, 

increase performance and reduce the probability of 

encountering problems[1]. Drilling for energy search 

from the ground has shown considerable technological 

advances in the recent years[2]. Different methods from 

different disciplines are being used now in drilling 

activities in order to obtain a safe and cost-effective well 

construction[3].  

   The first well drilled in a new field (a wildcat well) 

generally will have the highest cost. With increasing 

familiarity to the area optimized could be implemented in 

decreasing costs of each subsequent well to be drilled 

until a point is reached at which there is no more 

significant improvement.  

   The relationship among drilling parameters are 

complex, so the efforts is to determine what combination 

of operating conditions result in minimum cost 

drilling[4].  

   The rate of penetration is important in drilling the wells 

that are required in the development process of the oil 

field. It is likely to finish the well as soon as possible 

without problems [5].  

 

   So in order to implement the optimization concept for 

drilling parameters and reducing the cost of drilling, data 

from the drilled wells in areas that have the same 

geological properties of the area that is going to be drilled 

and nearby wells are gathered and analyzed to start 

drilling the well at the lowest cost as possible[6].  

   The drilling process is a complex process including 

many factors some of them can be adjusted at a time to 

enhance the drilling process and they are changeable with 

time, these parameters called controllable parameters, for 

instance, rotary speed and weight on bit.  

   The other parameters are difficult to control like depth 

and formation pressure. These parameters called 

uncontrollable parameters. Predicting penetration rate 

includes some difficulties because it relies on both the 

controllable and uncontrollable parameters. Many 

mathematical models have been proposed by several 

researchers to predict the penetration rate and to 

investigate the relationship between different drilling 

parameters and the penetration rate. Teale [7] presented 

the concept of mechanical specific energy and the 

equation concluded in term of the operational parameters 

as follows: 

 

𝑀𝑆𝐸 = 𝑊𝑂𝐵 ∗ [
1

𝐴𝑏
+ 

13.33∗ 𝜇∗𝑁

𝑑𝑏∗𝑅𝑂𝑃
]                                              (1) 
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   Where MSE is the mechanical specific energy, WOB is 

the weight on bit, N is the rotary speed, Ab is the borehole 

area, 𝜇 is bit specific coefficient of sliding friction and 

ROP is the penetration rate. Bourgoyne and young [8] 

developed a model based on the multiple regression 

analysis of the field data gathered. The model describes 

the ROP as a function of formation strength, formation 

compaction, formation depth, differential pressure, bit 

diameter, bit weight, bit wear, and bit hydraulics. The 

equation for predicting the penetration rate takes into 

account various drilling parameters as follows: 

 

𝑅𝑂𝑃 = exp  (a1 + ∑ ajxj) 8
j=2                                                   (2) 

 

   Where a1 to a8 are constants that estimated by multiple 

linear regression. Hareland and Motahhari [9] developed a 

ROP model based on Hareland model for PDC bit 

assuming 100% cleaning efficiency: 

 

𝑅𝑂𝑃 = 𝑊𝑓  ( 
𝐺 𝑁𝑦 𝑊𝑂𝐵𝛼

𝑑𝑏 𝜎
 )                                                         (3) 

         

Where: G is a coefficient determined based on bit and 

blade geometry. 𝑊𝑓 is the wear function calibrating ROP 

values for a worn bit. 𝜎 Unconfined rock strength. And 

it’s a function of WOB, RPM, and rock strength at the 

drilling depth. All the previous models to predict ROP 

were based on operational parameters and rock strength 

and did not include the dynamic elastic properties of 

rocks. In this research, the model focuses on this area to 

relate these properties with ROP.  Artificial neural 

network design was inspired by the human brain. ANN is 

applied in different fields, for instance, financial services, 

biomedical applications, time series prediction. Due to 

neural network ability in solving non-linear problems, 

they were used widely in petroleum engineering.  

   Such application of neural network includes bit 

selection, reservoir characterization and enhanced oil 

recovery (EOR)[10]. The perceptron was introduced by 

Rosenblatt[11]. The perceptron receives many inputs 

(𝑿𝟏, 𝑿𝟐,𝑿𝟑, … . 𝑿𝑵) from all the neurons in the previous 

layer. And one output is coming out from it (𝒚). 

Moreover, the perceptron has a bias weight denoted 

as(𝒘𝟎).  

   During the training stage, the weights will be changed 

continuously. So, it is possible to reduce or to strengthen 

some neurons' weight to get different outputs. A linear 

combination which is the sum of the product of the weight 

of each previous neuron by their inputs and adding to the 

summation the bias value as follows: 

 

𝒚 =  ∑ 𝑥𝑖
𝑛
𝑖=0 . 𝑤𝑖 + 𝑤0                                                                   (4) 

 
Where: (𝒙𝒊) is the output from the previous neuron or 

from the input layer, (𝒘𝒊) Is the weight connecting the ( 

𝒊𝒕𝒉) neuron from the previous layer to the (𝒋𝒕𝒉) neuron in 

the Current layer, (𝒘𝟎) is the bias, (𝒚) is the weighted 

sum. After the weighted sum computed, this value should 

be entered in a function called activation function (𝝈𝐳) 

[12]. This concept is demonstrated in Fig. 1. 

 
Fig. 1. Concept of the Perceptron with 𝒏 Inputs and One 

Output[12] 

 

   The sigmoid function is one type of activation function 

which has the shape of the "S" curve. Sigmoid function 

sig(z) is sometimes called 'squashing' function, because it 

squashes the input to a value range between (0 and 1). 

This function is applied to the weighted sum of the 

outputs of the previous neuron to get the input of the 

present node [13]. To get the right outputs from the 

network we need to train the network in an iterative 

process. The network must be fed with a data set that 

contains the inputs and the outputs. The output from the 

network is called “predicted output”. The output from the 

data set is called “desired output” or the “target”. The 

predicted outputs are compared with the targets to 

estimate the error between the calculated and the actual 

output, subsequently, evaluating the performance of the 

network, for each iteration the weights are adjusted in 

order to get better results (closer to desired outputs). For 

this purpose, learning algorithms are used to get the job 

done[14].  

   There are two types of neural networks due to their 

learning techniques, supervised and unsupervised. In 

supervised neural networks, the output values are known. 

And in the case of unsupervised, the output is unknown. 

The backpropagation algorithm (BP) and Marquardt-

Levenberg are the most familiar learning algorithms[15]. 

 

2- Aim of This Study 

     

   In this study, an intelligent model was developed in 

order to be used in rate of penetration prediction based on 

bulk modulus, shear modulus and Poisson’s ratio as 

inputs. This model was built and developed based on the 

data provided from Nasiriya oil field which is the case 

study of this paper. Thus, predicting the ROP helps in 

speculating drilling cost in the study area. 

 

3- Materials and Methods 

 

3.1. Study Area Description 

  

   Nasiriya oil field is located on the Arabian platform in 

Dhi-Qar governorate, southern of Iraq, a zone with a 

gentle fold. The field is about 38 kilometers northwest the 

Nasiriya, west of the Zagros fold belt. The area of the 

field is located on an unstable shelf close to the Arab 

platform (Mesopotamian zone).  
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   This zone characterized by the presence of subsurface 

anticlines and domes with variable extension. Arabian 

shield suffered from erosion that put in a lot of clastic 

sediments (Zubair formation). Nasiriya oil field has 

reserves in the late cretaceous (Mishrif limestone 

formation) and early cretaceous (Yammama limestone 

formation). The Mishrif Formation (Cenomanian-Early 

Turonian) represents a heterogeneous formation primarily 

characterized as organic detrital limestones, capped by 

limonitic freshwater limestones. It is thickest in the 

Rumaila and Zubair fields (270 m), in the NahrUmr and 

Majnoon fields along the Iraq - Iran border it becomes 

(435 m) thick. And in Abo Amud field between kut and 

Amara it is (380 m) thick. Other isolated occurrences lie 

near Kifl (255 m) and Samarra (250 m)[16]. 

 

3.2. Data Collection and Research Methodology 

 

   The first step in the research methodology is the 

selection of wells in the Nasiriya oil field. In this field, 

there are two sets of open hole logs for different depth 

intervals provided by Schlumberger Company (INOC, 

1985; INOC, 2007).  

   The first one from 1924 m to 2532 m and the other one 

from 2528 m to 3430 m. The first set is passed through 

Mishrif carbonate formation which is the most important 

formation. Whereas, the second set is passed through 

Yammama carbonate formation which is one of the 

deepest reservoirs in the NS oil field. NS-1, NS-3, NS-4, 

NS-5, NS- 9, NS-15, NS-16, NS-18, NS-19, and NS-21 

are selected for this study. Five exploratory wells drilled 

in the Nasiriya oil field with in the period 1978 -1987. All 

the picked wells are production wells and scattered to 

overlay wide area of the Nasiriya oil field.  

   This distribution gives a high stiffness in the field data. 

All logs are present for these wells (INOC, 2007). Core 

samples were used in this research. Laboratory 

measurements were conducted on the core samples to 

compare log reading and lab measurements. James 

Instrument V-Meter Mark IV Ultrasonic device was used 

for measuring the compressional waves’ velocities.  

   The samples dimensions were (1) inch in diameter and 

(2) inches in length. After the samples preparation 

process, dynamic elastic properties which include bulk 

modulus, shear modulus, and Poisson’s ratio are 

computed. Then, the data were used to build an intelligent 

model using ANN to predict the rate of penetration. The 

data set was divided into three categories training, testing 

and validation by 70%, 15%, and 15% respectively. The 

steps of developing (ANN) model are as follows: 

 

1- Selecting the data: after the dynamic elastic properties 

have been calculated by IP software and the rate of 

penetration records has been organized and listed with 

depth. The data must be analyzed and processed. 
 

2- Building neural network model: the model is built by 

selecting properties of the network such as network 

topology, training algorithms and minimum accepted 

error between predicted and actual.  

3- Testing the model: the model was tested by new data 

that wasn't used in the training stage and within the 

range of   training data. 

 

 

4- Implementing Neural Network 

 

   The artificial neural network is used in many 

applications to model highly non-linear problems. 

Sometimes ANN models fast to build and give accurate 

results. The neural network model was built using the 

Marquardt-Levenberg training algorithm. Two hidden 

layers were used; each layer has twenty hidden neurons 

with the sigmoid transfer function for the two hidden 

layers. One output layer and a linear transfer function 

between the last hidden layer and the output layer. The 

dynamic elastic properties (KB, MU, and PR) data from 

five wells (NS-1, NS-3, NS-4, NS-5, NS-18) were 

averaged and listed with depth. After averaging the data, 

they have been arranged in a form that the network 

accepts it in order to be used as input data for training the 

network. The number of epochs was set to 1000 iteration. 

The performance of the neural network model for ROP 

prediction should be evaluated. In order to do this 

evaluation, a regression analysis between network outputs 

(ROP predicted) and actual (ROP) was hired.  

   Fig. 2 demonstrates regression analysis with a straight 

line stand for best regression between the net output (ROP 

predicted) and the desired output (ROP actual). 

 

 
Fig. 2. Regression for the ROP model at Training, 

Validation, and Testing 

 

   To get an excellent fit line the slope must be one and the 

intercept must be zero.  
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   Good correlation coefficients (R) were obtained from 

the trained network which they were R = [0.96, 0.96, 

0.94] during the training, testing and validation stages 

respectively. The mean square error between predicted 

and desired (ROP) was (3.58*10
-5

) as shown in Fig. 3. 

 

 
Fig. 3. Mean Square Error for the Network 

 

5- Results and Discussion 

 

   After the clay volume and the type of lithology have 

been identified. Shear wave velocity (VS) can be obtained 

by using the Greenberg-Castagna model which depends 

on the type of formation and clay volume calculations. 

Then, Bulk modulus, Shear modulus and Poisson's ratio 

are computed and listed against depth for Mishrif 

formation of the studied wells. Dynamic elastic properties 

were calculated for the ten selected wells. These results 

are in agreement with Fjaer et al [17] and Gercek [18]. 

The Table 1 illustrates the average values of the dynamic 

elastic properties for the selected wells. The average 

values of (VP/VS) range from (1.87) to (1.91) where the 

velocity in (ft/s). These values agree with Pickett [19], 

Fadhil [20] and Zinszner and Pellerin [21] results for 

(VP/VS) values for limestone. The results of dynamic 

elastic properties are shown in Fig. 4 for NS-16. 

 

 
Fig. 4. Dynamic elastic properties for Mishrif formation 

(NS-16) 

   Laboratory measurements were conducted on samples 

of cores taken from NS-3 and NS-18 to measure 

compressional and shear waves velocities and to compare 

it with the results from the sonic log at the same depth. 

The non-destructive ultrasonic test was used to measure 

transit time for compressional and shear waves. James 

instrument V-meter mark IV device used for these 

measurements and it has an advanced microprocessor and 

equipped with the S-wave response (shear wave 

transducers). The results showed good agreement between 

laboratory measurements and log records with maximum 

absolute percentage error (APE) is 20% and minimum 

(APE) is 1%. Due to convenience between the lab 

measurements and the shear waves obtained from 

Greenberg-Castagna model. Greenberg-Castagna model 

was used to estimate the shear wave velocities curve. 

 

Table 1. Average results for dynamic elastic properties 

FM WELL VP/VS KBGPa 
St.de

v 
MUGPa 

St.d

ev 
PR St.dev 

M
IS

H
R

IF
 F

O
R

M
A

T
IO

N
 

NS-1 1.88 23.7 5.7 11.1 2.9 0.300 0.018 

NS-3 1.88 25.8 8.8 12.0 4.1 0.300 0.014 

NS-4 1.87 23.4 6.0 10.9 3.0 0.299 0.011 

NS-5 1.88 22.1 6.3 10.2 2.7 0.301 0.015 

NS-9 1.90 20.6 8.5 8.6 4.0 0.305 0.017 

NS-15 1.88 21.1 4.7 9.8 2.5 0.301 0.013 

NS-16 1.91 20.7 6.4 9.4 3.5 0.307 0.019 

NS-18 1.87 25.5 8.4 11.9 3.7 0.299 0.013 

NS-19 1.88 24.8 7.7 11.6 3.6 0.300 0.015 

NS-21 1.87 27.6 9.0 13.0 4.0 0.297 0.009 

 

   Table 1 lists the dynamic elastic properties values for 

the studied wells. Highest average value of bulk modulus 

was (27.6) GPa from NS-21. The minimum average value 

of bulk modulus was (20.6) GPa from NS-9. For the shear 

modulus, the minimum average value was (8.6) GPa from 

NS-9. The maximum average value was (13) GPa from 

NS-21. For the Poisson’s ratio, the values where close 

together for the all wells.  

   The minimum average value was (0.297) from NS-21 

and the maximum was (0.307) from NS-16. Standard 

deviation gives an idea about how the data are spread out 

around the mean (average). Low standard deviation 

means that most of the numbers are close to the mean.   

   Higher standard deviation was obtained from NS-21 

with a value of (9) for bulk modulus. In the other hand, 

the minimum value of standard deviation was obtained 

from NS-15 which was (4.7). The deviation around the 

mean was smaller for the shear modulus. Largest 

deviation around the mean was (4.1) from NS-21. NS-15 

gave low standard deviation around (2.5). In case of 

Poisson’s ratio the highest value of standard deviation 

was (0.019) which gained from NS-16, while the lowest 

value of standard deviation obtained from NS-21 was 

(0.009).    

   The ROP values were supported as discrete points in 

drilling reports. Then, linear regression was used to 

predict the values of ROP along the depth of interest in all 

studied wells.   
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   The correlation coefficient was (R
2 

= 0.91). Dynamic 

elastic properties were plotted against rate of penetration 

for the wells (NS-1, NS-3, NS-4, NS-5, and NS-18) as 

shown in Fig.5. The bulk modulus is reciprocal of rock 

compressibility. So, as the value of this modulus increase, 

the rock resistance to penetration also increases. In the 

result, if the other operational parameters and rock 

properties held constant, low rate of penetration will be 

obtained. Fig. 5 does not show a clear trend between bulk 

modulus and ROP because of wide range of variety in 

bulk modulus. This is due to the heterogeneity of 

carbonate reservoirs. For the shear modulus, it’s the rock 

resistance for the applied shear force. Its effect was the 

same as the effect of bulk modulus. From Fig.5, at the top 

of formation where the values of bulk modulus and shear 

modulus were at minimum the ROP was at its highest 

value. ROP started to decrease as the elastic properties 

started to rise up along the depth of interest. 

 

   The plot of bulk modulus and shear modulus versus 

ROP for the wells (NS-9, NS-15, NS-16, NS-19, and NS-

21) is shown in Fig. A1 in Appendix- A 

 

 
Fig. 5. Bulk modulus and shear modulus vs average rate 

of penetration (NS-1, NS-3, NS-4, NS-5, and NS-18) 

 

   Fig. 6 demonstrates the relationship between the 

Poisson’s ratio and the rate of penetration for the wells 

(NS-1, NS-3, NS-4, NS-5, and NS-18). Poisson’s ratio is 

the negative ratio of lateral strain to longitudinal strain. 

High Poisson’s ratio means the rock has lateral strain 

higher than longitudinal strain.  

   This means that the rock has more resistance to 

penetration process. As shown in Fig. 6, the penetration 

rate was highest at the top of the Mishrif formation where 

the Poisson’s ratio was at its minimum values.  

   As moving downward, the ROP started to decrease as 

the Poisson’s ratio increased. All curves have large 

deflections and non-clear trend.  

 

   There are a lot of parameters that lead to change in the 

ROP. Also, the Poisson’s ratio was plotted against ROP in 

Appeendix-A2. The same behavior was obtained for these 

wells 

 

 
Fig. 6. Poisson’s ratio vs average rate of penetration (NS-

1, NS-3, NS-4, NS-5, and NS-18) 

 

   Fig. 7 shows a plot between ROP from field and the 

predicted ROP by the ANN model for the wells (NS-1, 

NS-3, NS-4, NS-5 and NS-18).  

   The data from these wells where used to train and build 

the ANN model. Fig. 8  shows the predicted ROP by the 

ANN model for the wells (NS-9, NS-15, NS-16, NS-19 

and NS-21). 

 

 
Fig. 7. ROP predicted by ANN model versus ROP actual 

(NS-1, NS-3, NS-4, NS-5, and NS-18) 

 

 

 

1900

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

3.90 3.95 4.00 4.05 4.10 4.15 4.20

D
EP

TH
 (

M
) 

ACTUAL ROP (M/HRS)  
PREDICTED ROP (M/HRS) ANN 



Y. A. Khudhaier et al. / Iraqi Journal of Chemical and Petroleum Engineering 21,2 (2020) 7 - 14 

 

 

12 
 

 
Fig. 8. ROP predicted by ANN model versus ROP actual 

(NS-9, NS-15, NS-16, NS-19, and NS-21) 

 

6- Conclusions 

 

   The results did not show strong dependency of ROP on 

dynamic elastic properties. Because the rate of penetration 

does not depend on the elastic properties only other 

properties has direct effect on ROP like rock compressive 

strength, porosity, operational parameters, and bit 

hydraulics.  

   As shown in Fig. 5 and Fig. 6, there are large variations 

in the values of dynamic elastic properties due to 

heterogeneity of carbonate reservoirs. The ROP was 

inversely proportional with dynamic elastic properties. 

When the values of dynamic elastic properties decrease 

the ROP values rise up. A low rate of penetration was 

obtained in Mishrif formation which was between (3.7) 

and (4.1) m/hrs.  

   Based on the values of (VP/VS) ratio, the lithology of 

Mishref formation was limestone with some shale points 

scattered. The ANN model has a mean square error about 

3.58*10
-5

. As a result, the model gave close results to the 

real data and can be used in (ROP) prediction in similar 

area.  

   Highest average value of bulk modulus in Mishrif 

formation was (27.6) GPa estimated from NS-21 while 

the lowest average value was (20.6) GPa from NS-9. For 

the shear modulus, the highest average value was (13) 

GPa observed from well NS-21 and the lowest average 

value was (8.6) GPa estimated from well NS-9.  

   As for the Poisson’s ratio, the highest average value in 

the Mishrif formation was (0.307) from well NS-16 and 

the lowest average value was (0.297) from well NS-21. 

The Bulk modulus showed high distribution of the values 

around the mean.  

   The highest value of the standard deviation was (9) 

obtained from NS-21. In case of shear modulus, the 

highest value of standard deviation was (4.1) from NS-3. 

For the Poisson’s ratio, the values were close and the 

distribution was not major. Highest value of standard 

deviation was (0.019) obtained from NS-16.  Fig. 7 and 

Fig. 8 display the difference between the predicted and 

the actual ROP. 

 

Nomenclature 

 

db Bit diameter 

𝜇 Bit specific coefficient of sliding friction 

Ab Borehole area 

G 
Coefficient determined based on bit and blade 

geometry 

𝑁 Rotary speed 

𝜎 Unconfined rock strength 

𝑊𝑓 
Wear function calibrating ROP values for a 

worn bit 

 

Abbreviations 

 

APE Absolute percentage error 

ANN Artificial Neural Network 

BP Backpropagation 

KB Bulk modulus 

VP Compressional wave 

MSE Mean square error 

NS Nasiriya  

PR Poisson’s ratio 

ROP Rate of Penetration 

MU Shear modulus 

VS Shear wave 

St.dev Standard deviation 

WOB Weight on Bit 
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استخدام الشبكة العصبية الاصطناعية للتنبؤ بمعدل الاختراق من الخصائص المرنة 
 الصخرية الديناميكية

 
 2خلف يوسفيوسف و  1فاضل سرحان كاظم، 1ياسر عباس خضير

 
 ، العراقبغداد ,الجامعة التكنولوجية ،قسم تكنولوجيا النفط   1

 ، العراقبغداد،  وزارة التعليم العالي والبحث العلمي 2

 
 الخلاصة

 
يمثل الوقت المستغرق في تقدم عملية الحفر  جزءًا كبيرًا من إجمالي تكلفة البئر. حفر الآبار عملية باهظة    

تكلفة المعدات والمواد المستخدمة أثناء اختراق الصخور بالاضافة الى جهود الطاقم من أجل  الثمن بما في ذلك
في تخمين التكلفة لذلك معرفة معدل  إنهاء البئر دون مشاكل خطيرة. معرفة معدل الاختراق من شأنه أن يساعد

في تلك المنطقة. تم اختيار  الاختراق في المنطقة التي على وشك ان تحفر يساعد في عملية تخمين كلفة الحفر
عشرة آبار في حقل الناصرية النفطي بناءً على توفر البيانات. تم تحديد الخصائص المرنة الديناميكية لتكوين 

( واستناداً إلى ملفات IP V3.5) Petrophysics Interactiveالمشرف في الآبار المحددة باستخدام برنامج 
las  دراجها قبل الشركات. تم تحديد وتسجيلات اللوكات المقدمة من معدل اختراق الآبار التي تمت دراستها وا 

الخصائص المرنة الديناميكية. أجريت قياسات مختبرية على عينات أساسية مختارة من مقابل العمق مع معدل 
ئج لقياس وقت العبور لموجات الضغط والقص ولمقارنة هذه النتا Ultra-sonicبئرين. تم استخدام جهاز 

 Greenberg-Castagnaبتسجيلات اللوك. السبب وراء ذلك هو التحقق من دقة معادلة الموديل المستخدم 
 التي تم استخدامها لحساب موجات القص لحساب الخصائص المرنة الديناميكية للصخور.

ية الاصطناعية  تم بناء الموديل باستخدام تقنية الذكاء الاصطناعي والالية المستخدمة كانت الشبكة العصب   
للتنبؤ بمعدل الاختراق  في تكوين مشرف في حقل نفط الناصرية النفطي للآبار المختارة. تمت مقارنة النتائج 

الخطأ التربيعي  التي تم الحصول عليها من الموديل مع معدل الاختراق المقدم  من تقارير الحفر  وكان متوسط 
 صطناعية.لموديل الشبكة العصبية الا 10-5* 3.58) )
  

 .حقل الناصرية النفطي ,الخواص الديناميكية المرنة ,الشبكة العصبية الاصطناعية  ,معدل الاختراق : الدالةالكلمات 
 

 

 

 


