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Abstract

Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is
not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from
selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating
SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new
empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network
(ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of
SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity,
Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are
based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a
fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that
utilizing ANN was better for SSW predicting with a higher R? equal to 0.966 and lower other statistical coefficients than utilizing four
empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R? equal to 0.7826, 0.7636, 0.6764,
and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing.
The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of

limitations and target SSW accuracy.
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1- Introduction

Generally, sonic logs are classified alongside Density
Logs (DL) and Neutron Logs (NL) as porosity logs where
two types of sonic waves exist: Compressional Sonic
Wave Time (CSW) and Sonic Shear Wave Time (SSW)
[1]. CSW and SSW are measured either by Dipole Sonic
Log (DSI) on site or by experiments in the laboratory by
utilizing core plug samples [2] but computing SSW from
core plug tests is an expensive and time-consuming
method, and DSI is not running for all wells [3]. Sonic
waves with density are key parameters for calculating
some elastic rock mechanic properties such as Biot's
coefficient, Poisson ratio, shear modulus, rock
compressibility factor, and young modulus [4]. Elastic
rock mechanic properties are important in geomechanical
studies for prediction of wellbore instability and sand
production onset [5]. Formation lithology and its
properties, type of fluids that filled rocks and their
properties, reservoir temperature, and hydrostatic pressure
of the rock column are all parameters that affect sonic
wave velocities or transmitted time. Laminated clay and
structural shale content are making sonic wave

transmitting time increase [6] while decreasing in water
saturated rocks rather than dry rocks, where at 10% water
saturated, sonic waves have a strong decrease in intensity
that means an increase in wave transmitting time [7].
From the sixties of last century till now, many empirical
correlations have been developed based on logs and core
test data of selected worldwide reservoirs as summarized
in Table 1 [8-15]. All these empirical correlations in
Table 1. are developed to calculate SSW in terms of Shear
Sonic Velocity (SSV) and Compressional Sonic Velocity
(CSV) with velocity units of kilometer per second
(km/sec), where SSV and CSV are reciprocals of SSW and
CSW respectively.

Recently, at the beginning of the present century,
authors have gone to work on Atrtificial Intelligent (Al)
methods for estimating SSW because of past simple
regression correlations shown in Table 1. were for special
reservoir cases and did not take into account all effective
SSW parameters. Rezaee et al. (2007) [16] applied three
Al methods: fuzzy logic, neurofuzzy, and Artificial
Neural Network (ANN) to data from two wells in the
Carnarvon basin, NW shelf of Australia’'s sandstone
reservoir, with a third well used for validation. The
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datasets used were Gamma Ray (GR), CSV, NL, Deep
Resistivity Log (DRL), and DL. Tabari et al. (2012) [17]
utilized the ANN method for predicting SSV by using a
dataset of GR, NL, DL, and CSV of one well, while data
from two wells was used for ANN validation. Hadi and
Nygaard (2018) [18] used ANN for prediction of SSV by
utilizing data from the production section in the south of
Irag where CSV and DL are used as input parameters of
the input layer. Al Ghaithi and Prasad (2020) [19] adopted
Feedforward Neural Network (FNN) for predicting SSV
by using field data from the Norwegian North Sea where
the dataset comprised GR, DL, CSW, DRL, NL, and
Measured Depth (MD). Al Said Naji et al (2022) [20] on
their submitted paper to the Iragi geological journal are
working on ANN for predicting SSW based on one Iraqi
directional well and 1922 measured points of SSW that
were used as the output of the proposed ANN, beside nine
parameters of CSW, GR, NL, DL, DRL, Caliper (CAL),

True Vertical Depth (TVD), Azimuth Angle (AZI), and
Inclination Angle (INC) that utilized as inputs. They
obtained the following mathematical model for SSW
prediction for any directional well:

SSW =
w2 (—;

+e

2
Wi TVD + Wi CSW 4 Wij5 GR 4 Wi} CALS Wij5 NL+ Wijq DRL Wi DL+ Wiy INCH Wi g AZIT 01)

M)

1)+b2

Where W2; is an output-hidden layers weight, W1;; is an
input-hidden layers weights, j is the hidden layer neurons,
bl; is a hidden layer biases and b2 represents bias of
output layer.

The present study is aimed at making a comparison
between utilizing three existing empirical correlations of
Carroll (1969), Freund (1992) and Brocher (2005) and
developing a fourth with the results of constructed ANN
by Al Said Naji et al. (2022) for SSW estimation.

Table 1. Summary of Developed Empirical Correlation for SSV Estimation

References Year Correlation of SSV relation with CSV (km/sec) Eq. number Lithology Type
Pickett 1963 SSV =0.526.CSV ) Limestone
Pickett 1963 SSV = 0.556.CSV 3) Dolomite
Carroll 1969 SSV = 0.75609.CSV 081846 4 Various rock types
Castsgna, et. al 1985 SSV = —0.05509.CSV? + 1.0168.CSV — 1.305 (5) Limestone
Freund 1992 SSV =0.763.CSV — 0.603 (6) Various rock types
Eskandari, et.al 2004 SSV = —0.1236.CSV? + 1.6126.CSV — 2.3057 @) Carbonate rocks
— 2
Ameen et al 2009 SSV =0.52.CSV + 0.25251 9) Carbonate rocks
Al-Kattan 2015  SSV = 0.699.CSV 9% (10) Carbonate rocks

o Field of Study and Reservoir Description

The Faugi oil field is located in the Missan governorate
in the south of Irag. It is 50 km to the north—east of
Ammara city and 175 km north of Basrah city, as shown
in Fig. 1. It has two domes with north-west, south-east
anticlines in the north and south, respectively, and some
of its northern dome stretch is in Iran. The field length is
approximately 23 km and the width is approximately 7
km. The Fauqi oil field has two reservoirs: Asmari and
Mishrif. Asmari is an Iranian name, and it corresponds to
three Iragi names for the reservoir, which are: Jeribe-
Euphrates formation, Upper Kirkuk formation, and
Middle-Lower Kirkuk formation. The Jeribe-Euphrates
formation is the upper part of the Asmari reservoir that
was deposited during the Neogene geological period. It is
represented as an A unit with sub divisions of (Al, A2,
and A3) and an average thickness of 40 m. It has a
lithology that consists mainly of 85% dolomite alternated
with moderately thin shale. The Upper Kirkuk formation
is a middle sub-reservoir of the Asmari formation,
deposited during the Paleogene geological period. It is
denoted as the B unit with its classifications (B1, B2, B3
and B4) and consists basically of thick shale, alternated
with thin sandstone, argillaceous limestone, calcareous
shale and limestone. The sandstone portion is gray, poorly
consolidated, fine to medium grained, subangular to sub-
rounded, moderately sorted, predominantly quartz, and
argillaceous. It has an average interval of 120 m. The
Middle-Lower Kirkuk formation is a lower sub-reservoir
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of the Asmari formation. During the Paleogene geological
epoch, the Oligocene series and stage of Aquitanian to
lower Oligocene, this reservoir was deposited. It is
represented as C and D units in past studies and C unit in
modern studies where they are water submerged zones. Its
lithology is composed mainly of thick Shale and
Argillaceous Siltstone alternated with moderately thick
Argillaceous Limestone and Sandstone with an average
thickness of 200 m [21, 22].

Fig. 1. Iragi Faugi Oil Field Location on Iraq Map [23]

2- Materials and Methods

The same dataset utilized by Al Said Naji et al (2022)
[20] is used for the present paper. The selected dataset is
from one directional well that penetrated the Asmari
reservoir in the lragi Faugi oil field. The data of the
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mentioned directional well is comprised of 1922
measured points of SSW, beside nine parameters, CSW,
GR, NL, DL, DRL, CAL, TVD, AZI, and INC, as
illustrated in Fig. 2. As mentioned above, Al Said Naji et
al. (2022) [20] used these data to construct an ANN for
SSW prediction while considering the effects of well
deviation parameters (INC and AZI). Eq. 1 resulted as a
mathematical model of two loops to predict SSW for
directional wells. Table 2 summarizes the used dataset of
selected directional well.
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Fig. 2. Used Dat; of Di}ectiorial Wéll Lags %rack [20]

Table 2. Ranges Summary of Used Dataset

Parameter Minimum  Maximum Mean
SSW, (us/ft) 89.05 156.94 112.032
TVD, (M) 2993 3185.1 3089.05
CSW, (us/ft) 48.58 114.3 64.09
GR, (GAPI) 6.56 132.011 44,94
CAL, (in) 8.43 14.698 8.77
NL, (dimensionless) 0.301 44.6 16.097
DRL, (chm.m) 0.311 461.54 7.064
DL, (gm/cc) 2.15 294 2.569
INC, (deg) 44,55 48.29 47.19
AZl, (deg) 321.14 323.44 322.318

2.1. Existing Empirical Correlations

Selection of an appropriate SSW prediction correlation
for a given field is a very big challenge where any
mistake in SSW estimation leads to poor prediction of
rock elastic properties, making decisions on investments
and losses very difficult [24]. Asmari reservoir, as
described above, consists of different rock types, so any
developed empirical correlation from literature based on
one rock type cannot be used to calculate SSW. Three
empirical correlations suitable for various lithology types
were used to calculate SSW based on CSW data. These
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existing empirical correlations are Carroll (1969), Freund
(1992), and Brocher (2005), illustrated in Table 1. as Eq.
4, Eq. 6, and Eg. 8 respectively. Carroll in 1969
developed an empirical correlation for SSV determination
by using data obtained from the volcanic region of
Nevada where 62 dry core samples were collected with
the same measured log data from different intervals. This
correlation was established for all rock types by studying
and testing the effects of lithology kinds and hydrostatical
loads on SSV estimation [9]. Freund in 1992 established
an empirical correlation based on 57, 25 and 5 samples of
sandstone, siltstone, and claystone, respectively, for the
well penetrated Rotliegendes reservoir in Germany.
Samples had porosity ranges of 0.01-0.5 and clay content
of 0.01-0.88 while measurements were made at pressure
ranges between 10-300 Mpa. [11]. Brocher (2005)
introduced a global empirical correlation for SSV
determination. He used SSV and CSV datasets from
various fields in California: (1) fine-grained Holocene
deposits in San Francisco Bay; (2) wells with a depth of
more than 410 m at Santa Clara; (3) Miocene sedimentary
rocks from the central of California; (4) granodiorite and
salinan terrane granites from a pilot hole at Park-field;
and (5) other logs and core plugs from various fields and
previous studies [13].

In this paper, the use of these three global correlations
in SSW calculating is based on the mentioned measured
data, 1922 points of CSW, by using Excel 2022 in the
following sequence: (1) invert CSW to CSV; (2) multiply
the 304.8 conversion factor to convert units from ft/us to
km/sec; (3) use correlations to calculate SSV in units of
km/sec; and (4) invert SSV to SSW and use the conversion
factor to make it in units of us/ft.

2.2. Development of New Empirical Correlation

A new polynomial second order empirical correlation
was developed by using the same data of CSW and SSW
that consisted of 1922 measured points which used by Al
Said Naji et al. (2022) [20]. This correlation is established
in the same way of developing past empirical correlations
mentioned in Table 1. where its development was based
on the plot in Fig. 3 below, which has the following
formula with a correlation coefficient (R? equal to
0.8293:

SSW = —0.0143.CSW? + 3.1521.CSW — 29.73 (11)
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Fig. 3. Plot of Development Polynomial Second Order
Empirical Correlation
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2.3. Artificial Neural Network (ANN)

The ANN, constructed by Al Said Naji et al. (2022) [20]
in their submitted paper to the Iraqgi geological journal, is
used in this study to compare with the results of utilizing
three existing empirical correlations and a developed
fourth. They built ANN by a dataset of one directional
well from Iragi Fauqi oil field with measured 1922 points
of SSW and nine parameters of TVD, CSW, GR, CAL, NL,
DRL, DL, INC, and AZI using MATLAB R2012b. Using
multi parameters for ANN construction to was based on
their effects on SSW values where some of the past
literatures [2, 3, 25, 26] explained SSW response against
different log measurements of CSW, GR, CAL, NL, DRL,
and DL while Al Said Naji et al 2022 [20] on their paper
demonstrated the positive impact of hole deviation
parameters INC and AZI and the negative effect of TVD
on SSW as summarized in Table 3.

Table 3. Multi Logs Parameters Impact on SSW
Prediction
Parameter Impact on SSW Estimation
TVD Negative
CSwW Positive
GR Dual
CAL Dual
NL Positive
DRL Negative
DL Negative
INC Positive
AZI Positive

Measured SSW was used as a neuron of output layer
while others nine parameters were entered as input layer
neurons. Tangent function was adopted as hidden layer
activation function as appearing in Eq. 13 while linear
function showed below in Eqg. 14 used for activating of
output layer [27]. 1922 measured points are classified to
three parts 70%, 15%, and 15% for ANN three processing
sequences of training, validation and testing. Constructed
ANN had optimum structure of (ANN 9-12-1) based on
obtained maximum R? and minimum mean square error
(MSE) as appear in Fig. 4 in shape of multiple layer
perceptron (MPL) with single hidden layer. MPL is the
popular structured of networks for functions regression
that consisting from three layers input, hidden and output.
Any layer contains number of neurons that connected
with others of next layers with factor called weight (W)
while another factor works on adding freedom degree in
neurons connection called bias (bi) [28]. Each neuron of
layers before hidden layer are combining and modifying
by acting of hidden and output layers neurons in term of
collection junction by following function [29]:

S; =Y X, W1 + bl (12)
f(8) =151 (13)
Zp = Ej-a W2 f(S)) + b2 (14)

Where n is the neurons number of input layer, X; is the
input vector, W1;; is the weight of connection between X;
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and j, Sj is the summation of input weights and biases,
bl;. outputs are resulting from passing of S; though an
appropriate activation function, Z, represents estimated
(SSW) value, W2; is an output hidden layer weight, b2;
represents bias of output layer, while k is the neurons of
hidden layer.

ANN mathematical model was obtained in Eq. 1 was by
combining Eqg. 12, Eq. 13 and Eqg. 14 with substituting of
inputs and output variables to simplify SSW calculations.

Input Layer

(2

—— Output Laver

Fig. 4. ANN Structure for SSW Prediction
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3- Results and Discussion

Comparison between empirical correlations and ANN
results was based on statistical parameters of average
percent error (APE), absolute average percent error
(AAPP), standard deviation (SD), mean square error
(MSE), and correlation coefficient R-Square (R?) as
shown in the following equations respectively:

1N\ (zmi-zpi
apE=1Y () (15)
AAPE = i . |Zmi — Zpi] (16)
" 2,05
S = (2i=1(zp,in—prg) ) (17
MSE = 2 S2 1 (Zpn, - Zp))’ (18)
R2=1-— 2 (Zmi=2Zp)” (19)

2
i1 (Zm,i~Zpavg)

Where Zpyi, Zpi and Zpayg are measured, predicted and
averaged predicted SSW. Fig. 5 and Fig. 6 is explaining
the performance of both ANN and empirical correlations.
As note from first looking on these two figures, ANN
performance is better than four empirical correlations that
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mean applying Eq. 1 for any directional well for SSW
calculation is better than using Eq. 4, Eq. 6, Eq. 8 and Eq.
11.

Training: R=0.96777 Validation: R=0.96097

Output ~= 094 Target + 6.9
Output ~= 092 Target +9.1

20
Target

140

20
Target

140

Test: R=0.96594

All: R=0.96645

©  Data
Fit

i
ey =T

Output ~=094"Target + 6.4
Output ~=0.94"Target+ 7.2

o100

Fig. 5. ANN Performance Evaluation [20]
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Fig. 6. Empirical Correlations Performance Evaluation

Statistical coefficients for four empirical correlations and
ANN methods are summarized in Table 4. as can be seen,
the ANN approach is superior than the rest of the
empirical models where it had higher R? and lower APE,
AAPE, MSE, and SD. A new developed empirical
correlation Eq. 11 is better than other existing correlations
of Carroll (1969), Freund (1992), and Brcocher (2005)
Eq. 4, Eq. 6, and Eq. 8 respectively.

* SSW Measured

200
180
160
140

SSW (us/ft)

120
100

80
2990

3010

3030 3050 3070

Table 4. Statistical Parameters of SSW Prediction

Methods
Model APE AAPE MSE SD R?
Carroll, 1969 0.29345 5.353119 50.93531 15.27 0.7826
Freund, 1992 10.03937 13.77396 239.4537  21.22 0.7636
Brocher, 2005 6.0883475 9.436357 228.8576 22.19 0.6764
Polynomial
Second 0.16461 4.794007 38.65837 12.52 0.8016
Order, 2022
ANN, 2022 0.006 2.168 9.62 2.69 0.966

To support the above results in Table 4., and reinforce
what has been reached in the above sentences, we created
the following illustrated plots. These plots: Fig. 7 presents
a plot of measured and predicted SSW by Carroll (1969)
on the X-axis with TVD on the Y-axis. The statistical
parameters in Table 4 with this figure demonstrated that
the Carroll correlation outperformed the Freund (1992)
and Brocher (2005) correlations. Fig. 8 and Fig. 9 state
measured SSW against that predicted by Freund and
Brocher with TVD, respectively. Brocher was a bad
correlation for SSW prediction of Asmari reservoir. Fig.
10 is applying measured and predicated SSW by a new
developed polynomial second order correlation with TVD.
The results show that the new developed correlation is
better than the other three utilized empirical correlations,
and that is expected where the new correlation was
established based on measured data related to the target
SSW of the Asmari reservoir, while others were developed
by adopting data from different worldwide reservoirs that
had properties different than Asmari. Fig. 11 shows the
SSW of ANN with measured. Results obtained from ANN
are much more accurate than results of other empirical
methods according to account as much as possible the
high number of influencing parameters on SSW in
addition to consider wellbore deviation parameters INC
and AZI. Using the ANN mathematical model Eq. 1 or the
developed empirical correlation Eq. 11 is related to
decision makers, so using the ANN resulted model will
obtain high accuracy results of SSW but requires data
availability and people with programming software
knowledge due to the need to make two loops code for
SSW estimation, whereas utilizing a new developed
equation is easier than the ANN model and only requires
CSW data but will give low accurate SSW prediction.

SSW Carroll

3090 3110 3130 3150 3170 3190

TVD (m)

Fig. 7. Plot of Measured and Estimated SSW by Carroll Correlation with TVD
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Fig. 8. Plot of Measured and Estimated SSW by Freund Correlation with TVD
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Fig. 9. Plot of Measured and Estimated SSW by Brocher Correlation with TVD
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Fig. 10. Plot of Measured and Estimated SSW by Polynomial Second Order Correlation with TVD
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Fig. 11. Plot of Measured and Estimated SSW by ANN with TVD

To apply Eq. 1 to any directional well, use the ANN
matrix parameters obtained by Al Said Naji et al. (2022)
study in Table 5. Constructed ANN was (9-12-1) in that
each neuron in the hidden layer had twelve weights
connected to it for each parameter in the input layer. Also,
twelve weights were connected between the hidden layer
neurons and the output layer neuron. Twelve biases add

some degree of freedom to each neuron at the hidden
layer, while a single bias supports the output layer neuron.
Applying Eqg. 1 using Table 5. parameters, you need to
write code for two loops to calculate SSW.

The lack of sufficient data prevented the validation of
established models. We recommend validating the
developed models by using data from other fields.

Table 5. Constructed ANN Matrix [20]

Wi rwo W1 csw Wiljer  Wljicae Wiline Wljore Wlor Wline Wi azi b1; W2; b2
1.547 -6.385 3.107 4.66 -0.938 5.056 -4.332 1.003 1.133 3.488 -0.157
0.603 -0.567 0.591 0.455 0.497 2.959 -0.013 0.598 -0.978 -3.935 0.583
1.117 -1.055 2.383 19.42 -3.598 -8.034 -4.075 1.5398 -1.747 15.158 0.382
3.7 3.088 -2.798 -1.775 3.655 -16.18 -3.027 4.316 -2.073 -19.72 0.109
-0.709 0.2396 -0.84 -1.375 -0.565 9.056 -0.346 -0.348 0.787 7.869 -0.741 0.223
-5.465 -9.212 -5.083 7.27 3.058 6.371 -15.55 -11.23 0.752 12.453  0.0763
-2.326 -0.749 0.991 1.715 -1.051 -3.229 -1.42 16.492 -10.83 -4.423 0.584
-19.58 7.553 -7.6296 4.557 1.941 19.58 3.476 0.821 17.756 21.856  -0.133
1.805 -3.608 1.336 1.612 1.311 -6.774 -1.252 -6.347 2.704 -1.796  -0.226
1.808 3.937 -0.914 1.473 -1.629 3.678 -2.646 1.773 -8.731 0.778 0.1651
7.043 0.634 0.949 -1.104 -1.802 -3.921 -1.334 5.821 -8.471 -4.005 0.645
2.589 -0.912 0.643 1.908 -0.162 -1.138 -0.412 3.676 -5.105 -0.39 -1.477

4- Conclusions

This work is presenting comparison between empirical
correlations and ANN results for SSW estimation. Same
dataset adopted by Al Said Naji et al 2022 is used in
present study and it comprised of 1922 measured points
of SSW with other nine parameters TVD, CSW, GR, CAL,
NL, DRL, DL, INC and AZl. Three global existing
empirical correlations of Carroll 1969, Freund 1992, and
Brocher 2005 used for SSW predicting by utilizing all
measured points of CSW from dataset. A Polynomial
second order empirical correlation developed by using all
measured points of SSW and CSW. ANN constructed by
Al Said Naji et al 2022 results is used to compare with
empirical correlations results. Statistical parameters
demonstrated that ANN was very superior than others

empirical correlations where it had higher R? and lower
APE, AAPE, MSE and SD. Developed second order
empirical correlation was best than other correlations of
Carroll (1969), Freund (1992), and Brocher (2005)
because the last were established based on worldwide
fields data different than used dataset of Asmari reservoir.
Using either ANN mathematical model equation or new
developed second order empirical equation by any
consequent authors will depend on data availability,
persons knowledge in programming softwares and target
SSW accuracy.
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Nomenclature

AAPE Absolute average percent error

ANN Artificial neural network

APE Average percent error

AZI Azimuth angle (deg®)

b1; Input - hidden layers biases

CAL Caliper log (in)

Csv Compressional sonic velocity (ft/us) or
(km/sec)

CsSw Compressional sonic wave time (us/ft)

DL Density log (gm/cc)

DRL Deep resistivity log (ohm.m)

DSI Dipole sonic imager tool

FNN Feedforward neural network

GR Gamma ray log (GAPI)

INC Inclination angle (dego)

j Hidden layer neurons

MD Measured depth (length unit)

MSE Mean square error

n Neurons number of input layer

NL Neutron log (%)

R? Correlation coefficient

SD Standard deviation

S Summation of input weights and biases

SSV Shear sonic velocity (ft/us) or (km/sec)

SSW Sonic shear wave time (us/ft)

SW Water saturation (%)

TVD True vertical depth (m)

W1 Input - hidden layer neurons
connection weights

W2j Output - hidden layer connection
weights

Xi Input vector

Zmi Measured shear sonic wave time (us/ft)

Zp Predicted sonic shear wave time (us/ft)

Zpavg Average predicted sonic shear wave
time (us/ft)
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