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Abstract

Knowing the distribution of the mechanical rock properties and the far field stresses for the field of interest is an important task for
many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production,
reservoir compaction, and subsidence. A major challenge with determining the rock's mechanical properties is that they cannot be
directly measured at the borehole. Furthermore, the recovered carbonate core samples for performing measurements are limited and
they provide discrete data for specific depths.

The purpose of this study is to build 2D and 3D geomechanical models of the Khasib reservoir in the East Baghdad oil field/
Central area. TECHLOG.2015.3 software was used to build the 1D-MEM while Petrel E&P 2018.2 software was used to build the
3D distributions of rock mechanical properties. The Khasib formation has nine units (from K1 to K9). The current results support the
evidence that the horizontal stresses are somewhat similar for all layers in the vertical case, but their distribution varies horizontally
due to the changes in pore pressures. The pore pressure increases vertically, but its distribution within one layer is different due to the
production from different wells. Elastic and strength characteristics of rock, including Young modulus, Poisson ratio, and unconfined
compressive strength (UCS), have the same behavior, the highest value of the parameters appeared in the surface layer (K1). This
layer is more stiff than other layers that have high porosities and high permeability. The internal friction angle for all formations
ranges between 38°-40°, which gives a good harmonization with the limestone friction angle. The 3D distribution of the rock's
mechanical properties revealed the carbonate heterogeneity because of its marine depositional environment and complex diagenetic
processes. The findings of this study can be used for future geomechanical applications in the East Baghdad oil field including
wellbore stability analysis, fault reactivation, and CO2 sequestration.
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1- Introduction

. . stability, fault reactivation, and rock integrity [5]. Before
Carbonate reservoirs, by nature, have unique tarting the drilling operations, the stresses are in balance,
depositional environments and complex diagenetic .t it will be different after drilling the rock and
processes that control the spatial distributions of their extracting the hole. This will result in a gap or a change
mechanical properties. The result is that brittle, ductile, i, the stress magnitudes. This should be balanced or
fractured rocks, vugular pores, or tight formations may all replaced by the drilling mud. This means that the pressure
exit within small intervals of these reservoirs [1, 2].  of the mud column spreads causing pressure around the
Typically, coring and rock testing are the ideal methods to el |hore, trying to restore the balance to the wellbore and
determine the rock's mechanical properties, but core  ,revent the rock from failing by regulating the stresses
samples can be only samples at a well location, as well as arqnd the wellbore [6]. The estimate of rock properties is
core samples, are normally limited due to cost and time- ey jmportant in predicting rock failure. Rock failure
saving purposes [3, 4]. To overcome these challenges,  gyring drilling is an important problem to be solved in

dynamic determination of rock mechanical properties can petroleum technology [7].
be considered as the starting point to quantify these * The properties of the rocks are not uniform, as they vary
properties for applications related to reservoir  phqrizontally and vertically according to the type of rocks,
geomechanics. . rock formation, type of faults, and the causes of the
Comprehensive knowledge of the state of stress and its  tectonic system. Therefore, it is necessary to evaluate rock
changes over time plays an important role in the  geformation as a response to the drilling operations,
economic and security situation of hydrocarbon completion, and production Processes.

reservoirs, both before and after production. Changing Building a three-dimensional geomechanical model is
ground pressures affect various aspects such as well
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very useful to show the distribution of mechanical
properties of rocks including rock strength, elastic
properties, as well as stress distribution, and knowing of
pore pressure magnitudes at different depths. The purpose
of the study is to create two and three-dimensional
geomechanical models of the Khasib formation in the
East Baghdad Oil Field to be useful for future
applications related to reservoir geomechanics.

2- Area of Study

East Baghdad oil field is located in the center of Iraq,
about 10 km east of Baghdad city as shown in Fig. 1. The

production section of the East Baghdad oil field primarily
consists of carbonate rocks (Tanuma, Khasib, and Zubair
reservoirs). Khasib formation horizon contains nearly half
of the EB field’s OOIP [8]. It is an upper Cretaceous
formation, about 100 m thick found at depths ranging
from (2100 to 2300) m. Chalky mudstone with frequently
abundant micro fissures is the main rock type of the
Khasib formation. Al-Khasib formation is divided based
on the GR Log and Resistivity log into nine layers (K1-
K9), the main reservoirs (oil bearing) are the K2, K3, K4,
K5, and K6, and the other layers contain oil, but in very
small quantities [8].
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Fig. 1. Location Map of East Baghdad Qil Field (GEO ExPro, 2016)
3- Materials and Methods the software. Eq. 6 was used to determine the static

3.1. 1D MEM

A 1D MEM has been constructed from well logs by
using Techlog software. The data used for building 1D
MEM are bulk density, gamma ray, sonic logs, as well as
the final well reports and other related data.

The wvertical or overburden stress refers to the
overlaying rocks with formation thickness by integrating
the weight of these rocks [9]. This stress can be calculated
using Eq. 1.
o, = [ p,HgdH ()

The dynamic elastic properties have been also
calculated based on sonic and bulk density logs. Egs. 2
through 5 have been used to determine the dynamic
Young's modulus, Poisson ratio, bulk modulus, and shear
modulus, respectively. With respect to the static elastic
properties, it has been estimated using the correlations in
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Poisson’s ratio, while the static Young’s modulus was
calculated based on the John Fuller correlation [10].

Fon = Lt @
Vayn = % (3)
Kgyn = 13474.45 * [mtsi:ar)zl =24 Gayn 4)
Gayn = 1347445 = ﬁ (5)
Vsta = Vayn * PRmult (6)

Where: g, vertical stress, psi, p, bulk density, g/cc, H
total depth, m, Atgpeqr SONiC shear velocity, us/ft, Egy,
dynamic young modulus, Mpsi, Gg,, dynamic shear
modulus, Mpsi, Kg,,,, dynamic bulk modulus, Mpsi, vayn:
Dynamic Poisson’s ratio, unitless, vsta: Static Poisson’s
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ratio, the PR muripiier factor of the Eq. 6 can be adjusted to
get a good correspondence between the logs and the base
data.

Rock strength properties such as unconfined
compressive strength (UCS), internal friction angle, rock
cohesion (So), and tensile strength (TS) have also been
calculated for Khasib formation. Using Eg. 7, the rock
strength (UCS) of the Khasib formation was calculated as
a function of compressional wave velocity, where UCS is
in MPa [11]. A logical relationship between inputs (well
log data) and outputs (Vp) is required for selecting input
data[12]. Equation (8) is used to convert the sonic travel
time to compressional wave velocity where Vp is the P-
wave velocity in Km/sec, and At is the sonic time in
psec/ft. Based on the Gamma ray log, the internal friction
angle is estimated for Khasib formation. Rock cohesion
(So) and Tensile rock strength (TS) were calculated as a
function of internal friction angle and rock strength.

All possible data including log data (sonic, resistivity),
formation test, drilling reports, and well test are combined
to determine the pore pressure profiles against the Khasib
formation.

UCS = 2.28V, + 1.939

Y]
@)

Pore pressure is used as a key parameter for estimating
the in-situ horizontal principal stresses and for predicting
safe mud weights for drilling stable wellbores without any
expected results related to wellbore collapse or wellbore
breakdown [13]. More than one method is normally used
to estimate the horizontal stresses (Maximum oy and
Minimum g, horizontal stresses). In this study, the poro-
elastic models (Egs. 9 and 10) are used to estimate the
minimum and maximum horizontal stresses, respectively
[14].
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= )0 —apy) + app + (=) (en + vew)

Where: a,,: vertical stress, psi, v: Poisson ratio, « : Biot
coefficient, pp: Pore Pressure, psi, E: Young’s modulus,

g, and ey are the tectonic strains in minimum and
maximum horizontal stress orientations, respectively.

=20 (1 -2 (11)
E

o= 2 (-1 (12)

3.2. 3D MEM Construction

Building a three-dimensional geomechanical model
depends on preparing many data, including the contour
map, the wells top, the formations tops, and well heads. In
addition to that, importing data from TECHLOG.2015 to
Petrel software.2018.2 to build the 3D MEM, this version
was used due to the difficulty of obtaining newer
versions. Such these data are pore pressure, vertical and

35

horizontal stresses, rock strength and elastic properties. In
this study, the 3D structure model has been built based on
fault model. Design the polygon according to the points of
the Khasib contour maps. 2D grid surfaces is created
depend on point data, line data, polygons, surfaces maps,
and well tops. The total number of grid cells was 273024,
the Z value equal to 9 based on nine layers in Khasib
formation. Make upscale for the well logs utilizing
arithmetic technique (simple method) based on the results
that are uniform with the well logs. Kriging interpolation
method was used for upscaling properties from the
synthetized well logs using 1D MEM to be distributed
into 3D MEM. 3D MEM enables to distribute all
estimated 1D MEM parameters between wells throughout
the Khasib formation. Fig. 2 shows all steps that have
been used to construct the 3D MEM, which starting from
building 1D MEM using well logs and correlations to
constructing 3D distributions of rock mechanical
properties of the Khasib formation.
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Fig. 2. 1D and 3D MEM Workflow

4- Results and Discussion

4.1.1D MEM

A 1D MEM has been built in this study based on
datasets of 4 wells of Khasib formation. Fig. 3 shows the
results of the construction of geomechanical model for
well B in which the elastic rock properties, rock strength,
horizontal and vertical stresses, and pore pressure are
presented along the depth of Khasib formation. The
results of this figure revealed that the fault regime of
Khasib formation can be divided into types based on the
Anderson’s classification. The most commonly regime is
strike slip regime (oy > g, > ay), while the other is
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reverse fault regime (o > 03, > g,,) at the top of Khasib
formation and at certain depths of the Khasib formation

bottom. These results showed an agreement with the
information obtained from the midland oil company.
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Fig. 3. 1D-MEM for Well-B

4.2. 3D MEM control the strain or strength behavior of rocks and

a. Vertical Stress

Vertical stress (Eq. 1) represents the overlaying weight
that applied at certain depth because of the rock density.
Fig. 4 shows the 3D distribution of vertical stress which
showed the fact that the vertical stress increases with
increasing the burial depth.
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Fig. 4. 3D Distribution of Vertical Stress
b. Horizontal stresses

Egs. 9 through 12 have been used to quantify the
magnitudes of maximum and minimum horizontal
stresses for 4 wells of Khasib formation. Fig. 5 shows 3D
distributions of these horizontal stresses. It is important to
note that the presented stresses are effective stresses that
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depend on the applied stresses and pore pressures. In
another word, the effective stress represents the combined
effect of pore pressure and total stress that keeps the
particles together. The results of Fig. 5 a and b show an
increase in the effective stresses around the production
wells. This can attribute to the pore pressure decreasing as
a result of production from four wells. For example, the
magnitudes of effective maximum and minimum
horizontal stresses are respectively 800 bar (11603 psi)
and 625 bar (9065 psi) around the production wells. In
contrast, these values are relatively less in regions far
away from the production’s wells.

c. Pore Pressure

The 3D pore pressure distributions of the Khasib
formation are shown in Fig. 6. There is a clear
heterogeneity in the pressure distribution horizontally and
vertically depending on the pressure of the formations.
The results of this figure revealed that the magnitudes of
pore pressures in the region around the production wells
are less than the pore pressure magnitudes when the
regions are far away from the production wells.

Fig. 7 a and b present the heterogeneity in pore
pressures horizontally for two units of Khasib formation
(K3 and K6). Based on the results of Fig. 7, the pore
pressure distribution in the Khasib formation can be
divided into two regions. High and low pressured zones.
the first region has a high value of pore pressure, while
the second region has low pressure values. This difference
is because most of the production wells are concentrated
in the second region. The pore pressure of the Khasib
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formation ranges between 3100 psi at the top and about
3500 psi at the bottom. This gives a good agreement with
the 1D and 3D MEM results. Fig. 6 a and b, show the
pore pressure distributions in the layers K3 and K6 of
Khasib formation, respectively.
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Fig. 5. a. 3D Distribution of Maximum Horizontal Stress
b.3D Distribution of Minimum Horizontal Stress

d. Poisson's ratio

Poisson’s ratio is an important mechanical property
since it is used to figure out the geomechanical behavior
of well drilling and subsequent operations [15]. Fig. 8,
shows the 3D distribution of the Poisson ratio of Khasib
formation. Fig. 9 a, shows higher values of Poisson’s ratio

(0.3 — 0.31) in layer K1 since this layer has low porosity
and permeability due to its high rock cohesion and
hardness. In contrast, other layers have almost the same
values of Poisson’s ratio as shown in Fig. 9 b for layer
K4.
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e. Young's modulus

Young's modulus represents the hardness of the rock.
There is a clear vertical and horizontal heterogeneity of
Young’s modulus values in Khasib formation, Fig. 10.
The highest value of Young’s modulus is shown at the top
of reservoir and that show in layer K1 (10.2 — 13.2 GPa),
Fig. 11 a. This layer is more stiffness than other layers
that have high porosities and permeabilities and that
contain hydrocarbon as in K3 layer of Khasib formation
Fig. 11b. This means that the strength of the rock is weak
due to the presence of voids inside the rock structure,
resulting a lower stiffness in the rock (6.9 to 8.9 GPa)
(i.e., higher deformation of the rock when the stresses are
applied) as shown in Fig. 11 b.
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f. Unconfined Compressive Strength (UCS) And Tensile
Strength

Unconfined compressive strength (UCS), as one of the
main parameters in reservoir geomechanics, represents
the strength of the rocks or the rock withstanding to the
applied stress. Fig. 12, illustrates the 3D distribution of
UCS of Khasib formation. The results showed a higher
UCS at the top of the Khasib formation (i.e., layer K1) as
a comparison with other layers. The reason is similar to
that reason in interpreting the higher values of Young’s
modulus and Poisson’s ratio. The rock strength of layer
K1 is ranged between 117 and 130 bar Fig. 13 a, while it
is between 96 and 112 bar in layer K2, Fig. 13 b. This
means that layer K1 is a more compacted carbonate layer
than other layers of Khasib formation.

The tensile strength of Khasib formation has the same
behavior as UCS because it depends on UCS in the
calculation. Fig. 14 presents a 3D distribution of tensile
strength of Khasib formation while Fig. 15 a and b

presents a 2D distribution of K1 and K2 layers,
respectively.
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g. Friction angle

Fig. 16 shows the 3D results of the friction angle of the
Khasib reservoir which are ranged between 38° and 40°.

This range agrees with the basic range of friction angle
for carbonates (21.5° - 41.3°) [16]. Fig. 17 a and b.
represent the 2D distributions of friction angle for layer
K3 and K8, respectively.
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5- Summary while other layers have approximately a closest

A summary distribution of all mechanical properties for
all layers showed that the highest values of rock

distribution or similar distribution in the rock mechanical
properties. This is due to the cohesion and cementing
between the layer components. Table 1 show the most

mechanical properties appear in the k1 and K7 layers, likely values of all mechanical properties.
Table 1. The Most Likely Values of All Properties
Parameters K1l K2 K3 K4 K5 K6 K7 K8 K9
Thickness (m) 6 12.5 15 14.5 7 14.5 9.5 12 7
E (Mpsi) 1.7 1.2 1.19 1.36 1.18 1.3 1.45 1.32 1.36
UCS (psi) 1800 1572 1587 1661 1617 1640 1734 1620 1600
PR 0.3 0.264 0.236 0.248 0.242 0.237 0.264 0.24 0.233
Co (psi) 1752 1250 1220 1380 1230 1340 1600 1337 1352
O (deg) 38.6 39.7 39.3 39.7 39 38.95 39.5 39.78 39.83
6- Conclusions 5. The internal friction angle for all layers within the
Khasib reservoir ranges between 38°-40°, this gives a
This study presents 2D and 3D distributions of rock good harmonization with the limestone friction angle.
mechanical properties of the Khasib formation in the East
Baghdad oil field/ Central area. The results outcomes can NOMENCLATURE
be summarized by the following points:
1. The horizontal stresses are somewhat similar for all o = Normal stress Psi
layers in the vertical case, but their distribution is &= Strain Unitless
horizontally varied due to the change in pore 7 = Shearstress Psi
pressure. o' = Effective stress Psi
2. Based on the 2D distributions of pore pressure of K3 gV = Vertical stress Psi
and K6 units, the Khasib formation of East Baghdad  sH = Maximum horizontal stress  Psi
oilfield/ central area can be divided into two regions, g4 = Minimum horizontal stress  Psi
the first region with relatively high values of pore  pp = Pore pressure Psi
pressures, while the second region has low values of  UCS = Unconfined compressive strength ~ Mpa
pore pressure. This difference is because of most of ¢ FANG = Internal friction angle degree
the production wells are concentrated in the second 7o, TSTR = Tensile strength Psi
region. Co, So = Cohesive strength Psi
3. Elastic characteristics of Khasib formation including PR = poisson's ratio  Unitless
Poisson ratio and Young modulus have the same g yME = Young's modulus Mpsi
behavior, the highest value of the parameters pgyn = Dynamic Young's modulus Mpsi
appeared in the surface unit (k1). This layer is stiffer  ~ = gnear modulus Mpsi
than other layers that have high porosities and g = BuIk modulus Mpsi
permeabilities and that contain hydrocarbon. pb = Bulk density gmlcc
4, Higher values of UCS are observed in the K1 layer 7 - sonic transit time ~ us/ft
rather than in other layers, also the tensile strength  , _ giot constant Unitless

has the same behavior because it depends on UCS
calculation.
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