Physicochemical analysis of selenium nanoparticles synthesis via pomegranate peel extracts approach: Cytotoxic impact on MCF7 cell line

Authors

  • Zahraa Mohammed Ahmed Department of Biology, College of Science, University of Baghdad, Jadriya, Baghdad, Iraq
  • Mais Emad Ahmed Department of Biology, College of Science, University of Baghdad, Jadriya, Baghdad, Iraq

DOI:

https://doi.org/10.31699/IJCPE.2025.4.15

Keywords:

Microbial characterization; microalgae; NCBI GenBank; growth kinetic model; biocathode; photosynthesis microbial fuel cell

Abstract

   Over the past decade, sustainable bimetallic nanoparticles (NPs) have attracted significant scientific attention. However, challenges related to synthesis efficiency and environmental impact remain major concerns. In this study, we present the green synthesis of bimetallic selenium nanoparticles (SeNPs) using pomegranate peel extract (PPE) as a natural, eco-friendly reducing and stabilizing agent. The synthesized nanoparticles were thoroughly characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analysis, confirming their successful formation, uniform morphology, and homogeneous distribution. The biosynthesized SeNPs demonstrated potent in vitro anticancer activity against the human breast cancer cell line (MCF-7), exhibiting a half-maximal inhibitory concentration (IC₅₀) of 11 μg/mL, while remaining non-toxic and biocompatible at lower concentrations. These findings highlight the significant biomedical potential of PPE-mediated bimetallic SeNPs as safe and effective anticancer agents. Overall, this green biosynthetic approach provides a sustainable and efficient alternative to conventional chemical synthesis methods for producing functional metal oxide nanoparticles.

References

[1] A. H. Hashem, M. A. AlAbboud, M. M. Alawlaqi, T. M. Abdelghany, and M. Hasanin. Synthesis of Nanocapsules Based on Biosynthesized Nickel Nanoparticles and Potato Starch: Antimicrobial, Antioxidant, and Anticancer Activity. Starch- Stärke, 74, 2100165, 2021. https://doi.org/10.1002/star.202100165

[2] F. A. Zadeh, D. O. Bokov, O. D. Salahdin, W. K. Abdelbasset, M. A. Jawad, M. M. Kadhim, and M Khatami. Cytotoxicity evaluation of environmentally friendly synthesis Copper/Zinc bimetallic nanoparticles on MCF-7 cancer cells. Rendiconti Lincei. Scienze Fisiche e Naturali, 33(2), 441-447, 2022. https://doi.org/10.1007/s12210-022-01064-x

[3] M. E. Ahmed, G. M. Sulaiman, B. A. Hasoon, R. A. Khan, and H. A. Mohammed. Green Synthesis and Characterization of Apple Peel‐Derived Selenium Nanoparticles for Anti‐Fungal Activity and Effects of MexA Gene Expression on Efflux Pumps in Acinetobacter baumannii. Applied Organometallic Chemistry, e7805. 2024. https://doi.org/10.1002/aoc.7805

[4] A.M.H. Al-Rajhi, S.S. Salem, A.A. Alharbi, and T.M. Abdelghany. Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian Journal of Chemistry. 15, 103927. 2022. https://doi.org/10.1016/j.arabjc.2022.103927

[5] M.A. Elkodous, H.M. El-Husseiny, G.S. El-Sayyad, A.H. El-Sayyad, A.S. Doghish, D. Elfadil, Y. Radwan, H.M. El-Zeiny, H. Bedair, and O.A. Ikhdair. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews. 10, 1662–1739. 2021. https://doi.org/10.1515/ntrev-2021-0099

[6] A. H. Hashem, T. A. Selim, M. H. Alruhaili, S. Selim, D. H. M. Alkhalifah, S. K. Al Jaouni, and S. S. Salem. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3), 112, 2021. https://doi.org/10.3390/jfb13030112

[7] S.S. Salem, M.S.E.M. Badawy, A.A. Al-Askar, A.A. Arishi, F.M. Elkady, and A.H. Hashem. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life, 12, 893, 2022. https://doi.org/10.3390/life12060893

[8] M. Emad, and K.Salama. A comparison of the effects of lemon peel-silver nanoparticles versus brand toothpastes and mouthwashes on staphylococcus spp. isolated from teeth caries. Iraqi Journal of Science, 61(8), 1894-1901, 2020. ‏https://doi.org/10.24996/ijs.2020.61.8.6

[9] M. F. Salem, W. A. Abd-Elraoof, A. A. Tayel, F. M. Alzuaibr, and O. M. Abonama. Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection. Journal of Nanobiotechnology, 20(1), 182, 2022. https://doi.org/10.1186/s12951-022-01393-x

[10] A. H. Hashem, E. Saied, O. M. Ali, S. Selim, S. K. Al Jaouni, F. M. Elkady, and G. S. El-Sayyad. Pomegranate peel extract stabilized selenium nanoparticles synthesis: promising antimicrobial potential, antioxidant activity, biocompatibility, and hemocompatibility. Applied Biochemistry and Biotechnology, 195(10), 5753-5776,‏ 2023. https://doi.org/10.1007/s12010-023-04326-y

[11] S. Menon, H. Agarwal, S. Rajeshkumar, P.J.Rosy, and V.K. Shanmugam. Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience. 10:122 –35. 2020. https://doi.org/10.1007/s12668-019-00710-3

[12] M. F. Salman, N.H.A.L. Al-Mudallal, and M.E. Ahmed. The effect of selenium nanoparticles on the expression of MexB gene of Pseudomonas aeruginosa Isolated from wound and burn infections. Iraqi JMS; 22 (1): 79-92. 2024.

[13] Z. J. S. Hassan, M. K. Hamid, and M. E. Ahmed. Synthesized Zinc Oxide Nanoparticles by the Precipitation Method on Streptococcus spp. from Dental Carries and Cytotoxicity Assay. International Jurnal of Drug Delivery Technology 12, 1327-1330. 2022. https://doi.org/10.25258/ijddt.12.3.65

[14] S.M. Mahdi, A.F. Abbas,and M.E. Ahmed. Cytotoxicity of zinc oxide nanoparticles to lymphocytes using Enterococcus faecium bacteriocin and assessment of their antibacterial effects. Nanomedicine Research Journal. Apr 1;9 (2):180-94. 2024. https://doi.org/10.22034/nmrj.2024.02.007

[15] P. Monika, M. N. Chandraprabha, R. Hari Krishna, M. Vittal, C. Likhitha, N. Pooja, and V. Chaudhary. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnology and Genetic Engineering Reviews, 40(4), 3379-3407, 2024. https://doi.org/10.1080/02648725.2022.2122299

[16] A. H. Hashem, A. A. Al-Askar, M. R. Al-Askar, K. A. Abd-Elsalam, A. S. El-Hawary, and M. S Hasanin. Sustainable biosynthesized bimetallic ZnO@ SeO nanoparticles from pomegranate peel extracts: antibacterial, antifungal and anticancer activities. RSC advances, 13(33), 22918-22927. 2023. https://doi.org/10.1039/D3RA03260D

[17] ‏ S. Potrč, T. Kraševac Glaser, A. Vesel, N. Poklar Ulrih, Z. L. Fras. Two‑layer functional coatings of chitosan particles with embedded catechin and pomegranate extracts for potential active packaging. Polymers, 12 (9):1855. 2020. https://doi.org/10.3390/polym12091855

[18] A.H. Hashem, S.S. Salem. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal, 17, 2100432.2022. https://doi.org/10.1002/biot.202100432

[19] R. Avendaño, N. Chaves, P. Fuentes, E. Sánchez, J.I. Jiménez, M. Chavarría. Production of selenium nanoparticles in Pseudomonas putida KT2440. Scientific Reports, 6, 37155. 2016. https://doi.org/10.1038/srep37155

[20] F. H. Fawzi, and, M. E. Ahmed. Green Synthesis and Characterization of Selenium Nanoparticles via Staphylococcus warneri Approach: Antimicrobial and on PhzM Pyocyanin Gene Expression in Pseudomonas aeruginosa. Plasmonics, 1-17. 2025. https://doi.org/10.1007/s11468-024-02378-2

[21] B. Wang, K. Zhang, J. Wang, R. Zhao, Q. Zhang, and X. Kong. Poly (amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids and Surfaces B: Biointerfaces, 189:110832. 2020. https://doi.org/10.1016/j.colsurfb.2020.110832

[22] R. A. Fernandes, A. A. Fernandes, E. C. Torres, A. F. M. Buszinski, G. L. Fernandes, C. C Mendes-Gouvêa, and D. B. Mendes-Gouvêa. Antimicrobial potential and cytotoxicity of silver nanoparticles phytosynthesized by pomegranate peel extract. Antibiotics, 7(3), 51, 2018. https://doi.org/10.3390/antibiotics7030051

[23] X.F. Zhang, Z.G. Zhang, W. Shen, and S. Gurunathan. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International journal of molecular sciences, 17. 2016. https://doi.org/10.3390/ijms17091534

[24] K.X. Lee, K. Shameli, Y.P. Yew, S.Y. Teow, H. Jahangirian, R. Rafee-Moghaddam, and Webster T.J. Webster. Recent developments in the facile biosynthesis of gold nanoparticles (AuNPs) and their biomedical applications. International Journal of Nanomedicine, 275–300. 2020. https://doi.org/10.2147/IJN.S233789

[25] M. F. Baran, C. Keskin, A. Baran, K. Kurt, P. İpek, A. Eftekhari, and W. C. Cho. Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L.(Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, 1-11, 2024. https://doi.org/10.1007/s13399-023-04366-8

Downloads

Published

2025-12-30

How to Cite

Ahmed, Z. M., & Ahmed, M. E. (2025). Physicochemical analysis of selenium nanoparticles synthesis via pomegranate peel extracts approach: Cytotoxic impact on MCF7 cell line. Iraqi Journal of Chemical and Petroleum Engineering, 26(4), 181-192. https://doi.org/10.31699/IJCPE.2025.4.15