A Morphological Study of Alumina Hollow Fiber Membrane
DOI:
https://doi.org/10.31699/IJCPE.2016.3.11Keywords:
Ceramic membrane, Hollow fiber, Morphology, Phase inversion.Abstract
Morphologies of ceramic hollow fiber membranes prepared by a combined phase-inversion and sintering method were studied. The organic binder spinning solution containing suspended Al₂O₃ powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures( 300 ˚C, 1400 ˚C, 25 ˚C) in order to obtain the Al₂O₃ hollow fiber membranes. The spinning solution consisted of polyether sulfone (PES), N-methyl-2-pyrrolidone (NMP), which were used as polymer binder, solvent, respectively. The prepared Al₂O₃ hollow fiber membranes were characterized by a scanning electron microscope (SEM). It is believed that finger-like void formation in asymmetric ceramic membranes is initiated by hydrodynamically unstable viscous fingering developed when a less viscous fluid (non-solvent) is in contact with a higher viscosity fluid (ceramic suspension containing invertible polymer binder). The effects of the air-gap (0 cm, 2 cm, 15 cm) on fibre morphology have been studied and it has been determined that viscosity due to change in air-gap is the dominating factor for ceramic systems.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iraqi Journal of Chemical and Petroleum Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
For papers published in IJCPE, authors and their institutions all have the same rights to reuse articles published in the journal in accordance with the journal by IJCPE is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This permits users to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Please check the license for full license terms and attribution requirements.