Measuring Dyes Concentration Using a Low-Cost Visible-Light Spectrophotometer

Authors

  • Baseem Al-Sabbagh Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Nada N. Abdulrazzaq Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.31699/IJCPE.2022.2.4

Keywords:

3D Printing, Arduino, color sensor, dyes, RGB LED, visible-light spectrophotometer

Abstract

   A low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as compared to a conventional measurement.

References

D.F. Swinehart, The Beer-Lambert law, J. Chem. Educ. 39 (1962) 333–335.

J. Zwinkels, Light, Electromagnetic Spectrum, in: R. Luo (Ed.), Encycl. Color Sci. Technol., Springer Berlin Heidelberg, Berlin, Heidelberg, 2015: pp. 1–8.

D. González-Morales, A. Valencia, A. Díaz-Nuñez, M. Fuentes-Estrada, O. López-Santos, O. García-Beltrán, Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors, Sensors (Switzerland). 20 (2020).

F.B. Gonzaga, C. Pasquini, A low cost short wave near infrared spectrophotometer: Application for determination of quality parameters of diesel fuel, Anal. Chim. Acta. 670 (2010) 92–97.

L. Noui, J. Hill, P.J. Keay, R.Y. Wang, T. Smith, K. Yeung, G. Habib, M. Hoare, Development of a high resolution UV spectrophotometer for at-line monitoring of bioprocesses, Chem. Eng. Process. 41 (2002) 107–114. doi: 10.1016/S0255-2701(01)00122-2.

A.W.S. Tarrant, Optical Measurements, 4th ed., Elsevier, 2003. doi: 10.1016/B978-0-7506-8308-1.00028-0.

E. V. Kvittingen, L. Kvittingen, B.J. Sjursnes, R. Verley, Simple and Inexpensive UV-Photometer Using LEDs as Both Light Source and Detector, J. Chem. Educ. 93 (2016) 1814–1817. doi: 10.1021/acs.jchemed.6b00156.

C. Burgess, The basis for good spectrophotometric UV&visible measurements, Elsevier B.V., 2017. doi: 10.1016/B978-0-444-63897-7.00001-9.

A.Y. Tolbin, V.E. Pushkarev, L.G. Tomilova, N.S. Zefirov, Threshold concentration in the nonlinear absorbance law, Phys. Chem. Chem. Phys. 19 (2017) 12953–12958. doi: 10.1039/c7cp01514c.

E.S.P.B. V, M. Blanco, H. Iturriaga, S. Maspoch, L.D.Q. Analitica, Simultaneous Determination of Metal Ions Spectrophotometric Determination of Binary, Ternary And Quaternary Mixtures of Aluminium, Iron, Copper, Titanium And Nickel By Extraction With 8-Hydroxyquinoline, 226 (1989) 271–279. doi: 10.1016/S0003-2670(89)80009-1.

T.A. Trumbo, E. Schultz, M.G. Borland, M.E. Pugh, Applied spectrophotometry: Analysis of a biochemical mixture, Biochem. Mol. Biol. Educ. 41 (2013) 242–250. doi: 10.1002/bmb.20694.

T. Atomssa, A.V. Gholap, Characterization of caffeine and determination of caffeine in tea leaves using uv-visible spectrometer, African J. Pure Appl. Chem. 5 (2011) 1–8.

Y. Coque, E. Touraud, O. Thomas, On line spectrophotometric method for the monitoring of colour removal processes, Dye. Pigment. 54 (2002) 17–23. doi: 10.1016/S0143-7208(02)00026-8.

P.C. Hauser, T.W.T. Rupasinghe, N.E. Cates, A multi-wavelength photometer based on light-emitting diodes, Talanta. 42 (1995) 605–612. doi: 10.1016/0039-9140(95)01455-K.

K.A. Mohammad, A. Zekry, M. Abouelatta, LED Based Spectrophotometer can compete with conventional one, Int. J. Eng. Technol. 4 (2015) 399. doi: 10.14419/ijet.v4i2.4504.

T.S. Yeh, S.S. Tseng, A low cost LED based spectrometer, J. Chinese Chem. Soc. 53 (2006) 1067–1072. doi: 10.1002/jccs.200600142.

J. Kim, A. Kim, H. Oh, B. Goh, E. Lee, J. Kim, Simple LED spectrophotometer for analysis of color information, 26 (2015) 1773–1780. doi: 10.3233/BME-151478.

D. Treichel, M.A. Thal, M.J. Samide, Topics in Chemical Instrumentation Applied Electronics : Construction of a Simple Spectrophotometer, J. Chem. Educ. 78 (2001) 1510–1512. doi: 10.1021/ed078p1510.

P. Hauser, R. Tan, A Simple Photometer Based on a New Tri-Colour Light-Emitting Diode, Chim. Int. J. Chem. 49 (1995) 492–494.

J.R. Hamilton, J.S. White, M.B. Nakhleh, Development of a Low-Cost Four-Color LED Photometer, 73 (1996) 1052–1054.

G. Veras, E. Cirino, W. Silva, S. Figueredo, C. Soares, T. Brito, S. Ricardo, B. Santos, Talanta A portable , inexpensive and microcontrolled spectrophotometer based on white LED as light source and CD media as diffraction grid, 77 (2009) 1155–1159. doi: 10.1016/j.talanta.2008.08.014.

H. Flaschka, C. McKeithan, R. Barnes, Light Emitting Diodes and Phototransistors in Photometric Modules, Anal. Lett. 6 (1973) 585–594. doi: 10.1080/00032717308058708.

J.J. Wang, J.R. Rodríguez Núñez, E.J. Maxwell, W.R. Algar, Build Your Own Photometer: A Guided-Inquiry Experiment to Introduce Analytical Instrumentation, J. Chem. Educ. 93 (2016) 166–171. doi: 10.1021/acs.jchemed.5b00426.

E.C. Navarre, Extensible Interface for a Compact Spectrophotometer for Teaching Molecular Absorption in the Undergraduate Laboratory, J. Chem. Educ. 97 (2020) 1500–1503. doi: 10.1021/acs.jchemed.9b01023.

B.S. Hosker, Demonstrating Principles of Spectrophotometry by Constructing a Simple, Low-Cost, Functional Spectrophotometer Utilizing the Light Sensor on a Smartphone, J. Chem. Educ. 95 (2018) 178–181. doi: 10.1021/acs.jchemed.7b00548.

E.K. Grasse, M.H. Torcasio, A.W. Smith, Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer, J. Chem. Educ. 93 (2016) 146–151. doi: 10.1021/acs.jchemed.5b00654.

R. Bogucki, M. Greggila, P. Mallory, J. Feng, K. Siman, B. Khakipoor, H. King, A.W. Smith, A 3D-Printable Dual Beam Spectrophotometer with Multiplatform Smartphone Adaptor, J. Chem. Educ. 96 (2019) 1527–1531. doi: 10.1021/acs.jchemed.8b00870.

K. Laganovska, A. Zolotarjovs, M. Vázquez, K. Mc, J. Liepins, H. Ben-yoav, V. Karitans, K. Smits, Hardware X Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements, HardwareX. 7 (2020) e00108. doi: 10.1016/j.ohx.2020.e00108.

G.C. Anzalone, A.G. Glover, J.M. Pearce, Open-source colorimeter, Sensors (Switzerland). 13 (2013) 5338–5346. doi: 10.3390/s130405338.

M.L. Kovarik, J.R. Clapis, K.A. Romano-Pringle, Review of Student-Built Spectroscopy Instrumentation Projects, J. Chem. Educ. 97 (2020) 2185–2195. doi: 10.1021/acs.jchemed.0c00404.

B.J. Place, Activity Analysis of Iron in Water Using a Simple LED Spectrophotometer, J. Chem. Educ. 96 (2019) 714–719. doi: 10.1021/acs.jchemed.8b00515.

D. Carreres-Prieto, J.T. García, F. Cerdán-Cartagena, J. Suardiaz-Muro, Performing calibration of transmittance by single rgb-led within the visible spectrum, Sensors (Switzerland). 20 (2020) 1–26. doi: 10.3390/s20123492.

D. Carreres-Prieto, J.T. García, F. Cerdán-Cartagena, J. Suardiaz-Muro, Spectroscopy transmittance by LED calibration, Sensors (Switzerland). 19 (2019). doi: 10.3390/s19132951.

P.C. Hauser, T.W.T. Rupasinghe, Simultaneous determination of metal ion concentrations in binary mixtures with a multi-LED photometer, Fresenius. J. Anal. Chem. 357 (1997) 1056–1060. doi: 10.1007/s002160050304.

P. González, N. Pérez, M. Knochen, Low cost analyzer for the determination of phosphorus based on open-source hardware and pulsed flows, Quim. Nova. 39 (2016) 305–309. doi: 10.5935/0100-4042.20160020.

N. Gros, A novel type of tri-colour light-emitting-diode-based spectrometric detector for low-budget flow-injection analysis, Sensors. 7 (2007) 166–184. doi: 10.3390/s7020166.

M. Calcabrini, D. Onna, Exploring the Gel State: Optical Determination of Gelation Times and Transport Properties of Gels with an Inexpensive 3D-Printed Spectrophotometer, J. Chem. Educ. 96 (2019) 116–123. doi: 10.1021/acs.jchemed.8b00529.

S.W. Smith, The Scientist & Engineer’s Guide to Digital Signal Processing, Second Edi, California Technical Publishing, 1999.

Downloads

Published

2022-06-30

How to Cite

Al-Sabbagh, B., & Abdulrazzaq, N. N. (2022). Measuring Dyes Concentration Using a Low-Cost Visible-Light Spectrophotometer. Iraqi Journal of Chemical and Petroleum Engineering, 23(2), 27-33. https://doi.org/10.31699/IJCPE.2022.2.4