Removal of Ranitidine Using Chlorella Sorokiniana MH923013

Authors

  • Maha Jawdat Makki Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Mahmood K. H. Al-Mashhadani Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Salam K. Al-Dawery Department of Chemical Engineering, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman

DOI:

https://doi.org/10.31699/IJCPE.2023.2.4

Keywords:

Bioremediation, Carbon dioxide, Chlorella, Microalgae, Pharmaceuticals, Pollutants, Ranitidine

Abstract

The frequent and widespread use of medicines and personal care products, particularly in the residential environment, tends to raise concerns about environmental and human health impacts. On the other hand, carbon dioxide accumulation in the atmosphere is a problem with numerous environmental consequences. Microalgae are being used to bioremediate toxins and capture CO2. The current study aimed to confirm the possibility of removing pharmaceutical contaminant (Ranitidine) at different concentrations by using the Chlorella Sorokiniana MH923013 microalgae strain during the growth time. As part of the experiment, carbon dioxide was added to the culture medium three times per week. Explanatory results revealed that gas doses directly affect microalgae growth and removal efficiency, as evidenced by faster and more productive cell adaptation compared to control cultures. The development profile of microalgae is significantly influenced by pure carbon dioxide bubbles. When compared to control flasks, carbon dioxide increased the specific growth rate and doubling time. During the 312 hours microalgae cultivation period, the Chlorella strain recorded the highest pollutant removal efficiency (58%), particularly at the pollutant concentration of 5 mg/l CO2.

References

S. N., Onuoha, F. I. Idike, and L.C., Orakwe. ‘‘Water supply resources for domestic purposes in Auchi Metropolis of Edo State, Nigeria’’. International Journal of Engineering and Technology, vol.2, no.6. June. 2012.

M.La Farre, S.Pérez, L. Kantiani, and D.Barceló .‘‘Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment’’. TrAC Trends in Analytical Chemistry, vol.27, no. 11, pp.991-1007. Dec. 2008. https://doi.org/10.1016/j.trac.2008.09.010

J.R.Petrie, N. Chaturvedi, I. Ford, M.C. Brouwers, N. Greenlaw, T. Tillin, I. Hramiak, A.D.Hughes, A.J. Jenkins, B.E Klein, and R. Klein, ‘‘Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial’’. The lancet Diabetes & endocrinology, vol.5, no.8, pp.597-609, Aug. 2017. https://doi.org/10.1016/s2213-8587(17)30194-8

A. B. Boxall, M. A.Rudd, B. W.Brooks, D.J. Caldwell, K.Choi, S. Hickmann, E. Innes, K. Ostapyk, J.P. Staveley, T. Verslycke, and G.T. Ankley, ‘‘Pharmaceuticals and personal care products in the environment: what are the big questions?.’’. Environmental health perspectives, vol.120, no. 9, pp.1221-1229, Sep. 2012. https://doi.org/10.1289/ehp.1104477

J. Kang, X. Duan, C. Wang, H. Sun, X. Tan, M.O. Tade, and S. Wang, ‘‘Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability’’. Chemical Engineering Journal, vol.332, pp.398-408, Jan. 2018. https://doi.org/10.1016/j.cej.2017.09.102

J. Wang, and S. Wang. ‘‘Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review’’. Journal of environmental management, vol. 182, pp.620-640, Nov. 2016. https://doi.org/10.1016/j.jenvman.2016.07.049

Z. Gojkovic, R. H. Lindberg, M. Tysklind, and C. Funk, ‘‘Northern green algae have the capacity to remove active pharmaceutical ingredients’’. Ecotoxicology and environmental safety, vol. 170, pp.644-656, April. 2019. https://doi.org/10.1016/j.ecoenv.2018.12.032

A. Silva, C. Delerue-Matos, S. A. Figueiredo, and O.M. Freitas, ‘‘The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review’’. Water, vol.11, no. 8, p.1555, Jul. 2019. https://doi.org/10.3390/w11081555

S. Hena, L. Gutierrez, and J. P. Croué, ‘‘Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review’’. Journal of hazardous materials,vol.403, p.124041, Feb. 2021. https://doi.org/10.1016/j.jhazmat.2020.124041

O. Sahu. ‘‘Reduction of organic and inorganic pollutant from waste water by algae’’. International Letters of Natural Sciences, vol. 8, no.1, 2014. https://doi.org/10.56431/p-8aq47u

J. J. J. Y. Yong, K. W. Chew, K. S. Khoo, P. L. Show, and J.S. Chang, ‘‘Prospects and development of algal-bacterial biotechnology in environmental management and protection’’. Biotechnology advances, vol.47, p.107684. Mar. 2021. https://doi.org/10.1016/j.biotechadv.2020.107684

I. Ahmad, N. Abdullah, I. Koji, A. Yuzir, and S.E. Mohamad. ‘‘Potential of Microalgae in Bioremediation of Wastewater’’. Bulletin of Chemical Reaction Engineering & Catalysis, vol.16, no.2, pp.413-429. Jun. 2021. https://doi.org/10.9767/bcrec.16.2.10616.413-429

P. L. Show, M. S. Tang, D. Nagarajan, T.C. Ling, C. W. Ooi, and J. S. Chang, ‘‘A holistic approach to managing microalgae for biofuel applications’’. International journal of molecular sciences, vol.18, no. 1, p.215, Jan.2017. https://doi.org/10.3390/ijms18010215

A. K. Koyande, K. W. Chew, K. Rambabu, Y. Tao, D.T. Chu, and P. L. Show. ‘Microalgae: A potential alternative to health supplementation for humans’’. Food Science and Human Wellness, vol .8, no.1, pp.16-24. Mar. 2019. https://doi.org/10.1016/j.fshw.2019.03.001

N. M. Langley, S. T. L. Harrison, and R. P. Van Hille, ‘‘A critical evaluation of CO2 supplementation to algal systems by direct injection’’. Biochemical Engineering Journal, vol.68, pp.70-75, 2012. https://doi.org/10.1016/j.bej.2012.07.013

B. Wang, Y. Li, N. Wu, and C.Q. Lan, ‘‘CO2 bio-mitigation using microalgae’’. Applied microbiology and biotechnology, vol.79, no.5, pp.707-718. Jul. 2008. https://doi.org/10.1007/s00253-008-1518-y

K. T LamLee, and, A.R. Mohamed ‘‘Current status and challenges on microalgae-based carbon capture’’. International Journal of Greenhouse Gas Control, vol.10, pp.456-469, Sep. 2012. https://doi.org/10.1016/j.ijggc.2012.07.010

V. Kothari, M. Patadia, and N. Trivedi, ،،Microwave sterilized media supports better microbial growth than autoclaved media’’. Research in Biotechnology, vol.2, no.5. Oct. 2011.

L. H. Santos, A. N. Araújo, A. Fachini, A. Pena, Delerue-Matos, and M. C. B. S. M. Montenegro, ‘‘Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment’’. Journal of hazardous materials, vol. 175, (1-3), pp.45-95. Oct. 2010. https://doi.org/10.1016/j.jhazmat.2009.10.100

A. N. Mishra, and A. Rana, ‘‘UV Spectrophotometric determination of ranitidine hydrochloride in pure and pharmaceutical formulation’’. Int. J. Chem. Sci, vol.7, no. 3, pp.2208-2210. 2009.

S. Bhatia, K. Sharma, R. Dahiya, and B. Tanmoy, ‘‘Modern applications of plant biotechnology in pharmaceutical sciences’’ Academic press. Jul. 2015.

J. H. Van Heerden, H. Kempe, A. Doerr, T. Maarleveld, N. Nordholt, and F. J. ‘‘Bruggeman, Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli’’. Scientific reports, vol.7, no. 1, pp.1-11, Nov. 2017. https://doi.org/10.1038/s41598-017-15895-4

A. M. Lakaniemi, C. J. Hulatt, D. N. Thomas, and J. A. Puhakka. ‘‘Carbon dioxide utilization in gas-sparge microalgal photobioreactors,’’ In Conference paper presented at: Asian biohydrogen, bioproducts symposium. Chongqing, China, 2015.

F., Kokou, P. Makridis, M. Kentouri, and P. Divanach, ‘‘Antibacterial activity in microalgae cultures’’, Aquaculture Research, vol, 43 no. 10, pp.1520-1527, Sep. 2012. https://doi.org/10.1111/j.1365-2109.2011.02955.x

R. S. Mahdi, M. K. Al-Mashhadani, and I. J. Abed, ‘‘Pre-dissolved Inorganic Carbon (DIC) for cultivation Chlorella sorokiniana MH923013, Coelastrella MH923011 and Coelastrella MH923012,’’. In IOP Conference Series: Materials Science and Engineering (Vol. 1076, No. 1, p. 012025), Feb. 2021. https://doi.org/10.1088/1757-899X/1076/1/012025

J. U. Grobbelaar, ‘‘Algal nutrition: mineral nutrition,’’ Handbook of microalgal culture: biotechnology and applied phycology, pp.97-115. 2004. https://doi.org/10.1002/9780470995280.ch6

M. G. De Morais, and J. A. V Costa,،، Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor,’’ Journal of biotechnology, vol.129,no. 3, pp.439-445, May. 2007. https://doi.org/10.1016/j.jbiotec.2007.01.009

L. Cheng, L.Z hang, H. Chen, and C. Gao, ‘‘Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor,’’ Separation and purification technology, vol. 50, no. 3, pp.324-329. Jul .2006. https://doi.org/10.1016/j.seppur.2005.12.006

S. F. Mohsenpour, and N. Willoughby, ‘‘Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors,’’ Biomass and Bioenergy, vol. 85, pp.168-177, Feb. 2016. https://doi.org/10.1016/j.biombioe.2015.12.002

H. T. Hsueh, H. Chu, and S.T Yu, ‘‘A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae,’’ Chemosphere, vol.66, no. 5, pp.878-886. Jan. 2007. https://doi.org/10.1016/j.chemosphere.2006.06.022

K. Ying, M. K. Al-Mashhadani, J. O. Hanotu, D.J. Gilmour, and W. B. Zimmerman, ‘‘Enhanced mass transfer in microbubble driven airlift bioreactor for microalgal culture,’’ Engineering, vol.5, no. 9, pp.735-743. 2013a. https://doi.org/10.4236/eng.2013.59088

K. Vediappan, and C.W. Lee, ‘‘Electrochemical approaches for the determination of ranitidine drug reaction mechanism,’’ Current Applied Physics, vol.11, no.4, pp.995-1000. Jul. 2011. https://doi.org/10.1016/j.cap.2011.01.007

M. Gros, S. Rodríguez-Mozaz, and D. Barceló, ‘‘Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry,’’ Journal of Chromatography A, vol. 1248, pp.104-121. Jul. 2012. https://doi.org/10.1016/j.chroma.2012.05.084

J. Q. Xiong, S. Govindwar, M. B. Kurade, K. J. Paeng, H. S. Roh, M. A. Khan, and B. H. Jeon, ‘‘Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus,’’ Chemosphere, vol.218, pp.551-558. Mar. 2019. https://doi.org/10.1016/j.chemosphere.2018.11.146

D. L. Cheng, H. H. Ngo, W. S. Guo, S. W. Chang, D.D. Nguyen, and W. S. S. M. Kumar, ‘‘Microalgae biomass from swine wastewater and its conversion to bioenergy,’’ Bioresource technology, vol.275, pp.109-122. 2019. https://doi.org/10.1016/j.biortech.2018.12.019

J. Hu, D. Nagarajan, Q. Zhang, J. S. Chang, and D. J. Lee, ‘‘Heterotrophic cultivation of microalgae for pigment production: A review,’’ Biotechnology advances, vol.36, no. 1, pp.54-67. 2018. https://doi.org/10.1016/j.biotechadv.2017.09.009

R. Chu, S. Li, L. Zhu, Z. Yin, D. Hu, C. Liu, and F. Mo, ‘‘A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production,’’ Renewable and Sustainable Energy Reviews, vol.139, p.110689. 2021. https://doi.org/10.1016/j.rser.2020.110689

L. Yang, H. Li, and Q. Wang, ‘‘A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater,’’ Bioresource technology, vol. 275, pp.35-43. 2019. https://doi.org/10.1016/j.biortech.2018.12.036

A. de Wilt, A. Butkovskyi, K. Tuantet, L. H. Leal, T. V. Fernandes, A. Langenhoff, and G. Zeeman, ‘‘Micropollutant removal in an algal treatment system fed with source separated wastewater streams,’’ Journal of hazardous materials, vol.304, pp.84-92. 2016. https://doi.org/10.1016/j.jhazmat.2015.10.033

H. Bodin, A. Daneshvar, M. Gros, and M. Hultberg, ‘‘Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water,’’ Ecological Engineering, vol.91, pp.169-172. 2016. https://doi.org/10.1016/j.ecoleng.2016.02.007

Downloads

Published

2023-06-30

How to Cite

Makki, M. J., Al-Mashhadani, M. K. H., & Al-Dawery, S. K. (2023). Removal of Ranitidine Using Chlorella Sorokiniana MH923013. Iraqi Journal of Chemical and Petroleum Engineering, 24(2), 31-39. https://doi.org/10.31699/IJCPE.2023.2.4

Publication Dates