Biosorption of Ciprofloxacin (CIP) using the Waste of Extraction Process of Microalgae: The Equilibrium Isotherm and Kinetic Study

Authors

  • Enass S. M. Al-Mashhadani Chemical Engineering Department, College of Engineering, University of Baghdad, Iraq
  • Mahmood K. H. Al-Mashhadani Chemical Engineering Department, College of Engineering, University of Baghdad, Iraq
  • Mohammed Abobakr Al-Maari Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

DOI:

https://doi.org/10.31699/IJCPE.2023.4.1

Keywords:

Microalgae; waste Chlorella Vulgaris biomass; Biosorption; wastewater treatment; Ciprofloxacin

Abstract

       Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that CIP biosorption occurred mainly at biomass sites containing carboxyl and amino groups. The equilibrium isotherm data and biosorption kinetics were addressed in the present study. The biosorption data match the Langmuir isotherm model, and the maximal biosorption capacity was determined to be 7.56 mg/g. While The pseudo-second-order model accurately described the biosorption kinetic data. Biosorbent regeneration was also studied using two different sodium hydroxide concentrations, the results showing that after desorption, the biosorption capacity decreased from 5.2 to 3.74 and 1.77 (mg/g) using 0.1NaOH and 0.5NaOH, respectively.

References

P. Verlicchi, M. Al Aukidy, and E. Zambello, “Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review,” Science of the Total Environment, vol. 429. pp. 123–155, 2012, https://doi.org/10.1016/j.scitotenv.2012.04.028

D. Fatta-Kassinos, S. Meric, and A. Nikolaou, “Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research,” Analytical and Bioanalytical Chemistry, vol. 399, no. 1. pp. 251–275, 2011, https://doi.org/10.1007/s00216-010-4300-9

M. J. Ahmed, M. A. Islam, M. Asif, and B. H. Hameed, “Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics,” Bioresour. Technol., vol. 243, pp. 778–784, 2017, https://doi.org/10.1016/j.biortech.2017.06.174

J. Radjenović, M. Petrović, and D. Barceló, “Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment,” Water Research, vol. 43, no. 3. pp. 831–841, 2009, https://doi.org/10.1016/j.watres.2008.11.043

G. Akerman-Sanchez and K. Rojas-Jimenez, “Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment,” Environ. Adv., vol. 4, p. 100071, 2021, https://doi.org/10.1016/j.envadv.2021.100071

L. A. Al-Khateeb, S. Almotiry, and M. A. Salam, “Adsorption of pharmaceutical pollutants onto graphene nanoplatelets,” Chemical Engineering Journal, vol. 248. pp. 191–199, 2014, https://doi.org/10.1016/j.cej.2014.03.023

M. J. Makki, M. K. H. Al-Mashhadani, and S. K. Al-Dawery, “Removal of Ranitidine Using Chlorella Sorokiniana MH923013,” Iraqi J. Chem. Pet. Eng., vol. 24, no. 2, pp. 31–39, 2023, https://doi.org/10.31699/IJCPE.2023.2.4

S. Thiele-bhn, “Pharmaceutical antibiotic compounds in soils- a review,” Journal of Plant Nutrition and Soil Science, vol. 166, no. 2. p. 145±167, 2003, https://doi.org/10.1002/jpln.200390023

M. J. Ahmed and S. K. Theydan, “Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations,” Chemical Engineering Journal, vol. 211–212. pp. 200–207, 2012, https://doi.org/10.1016/j.cej.2012.09.089

I. N. Abd and M. J. Mohammed-Ridha, “SIMULTANEOUS ADSORPTION OF TETRACYCLINE AND AMOXICILLIN BY CLADOPHORA AND SPIRULINA ALGAE BIOMASS,” Iraqi J. Agric. Sci., vol. 52, no. 5, pp. 1290–1303, 2021, https://doi.org/10.36103/ijas.v52i5.1467

J. O’Neill, “The Review on Antimicrobial Resistance Chaired by Jim O’Neill. 2015,” Tackling a Glob. Heal. Cris. Initial steps, 2014.

K. Kümmerer, “Chemosphere Antibiotics in the aquatic environment – A review – Part I,” Chemosphere, vol. 75, no. 4, pp. 417–434, 2009, https://doi.org/10.1016/j.chemosphere.2008.11.086

G. S. Bisacchi, “Origins of the Quinolone Class of Antibacterials: An Expanded ‘Discovery Story,’” Journal of Medicinal Chemistry, vol. 58, no. 12. pp. 4874–4882, 2015, https://doi.org/10.1021/jm501881c

A. Rusu, G. Hancu, and V. Uivaroşi, “Fluoroquinolone pollution of food, water and soil, and bacterial resistance,” Environmental Chemistry Letters, vol. 13, no. 1. pp. 21–36, 2015, https://doi.org/10.1007/s10311-014-0481-3

V. Andreu, C. Blasco, and Y. Picó, “Analytical strategies to determine quinolone residues in food and the environment,” TrAC - Trends Anal. Chem., vol. 26, no. 6, pp. 534–556, 2007, https://doi.org/10.1016/j.trac.2007.01.010

P. C. Sharma, A. Jain, S. Jain, R. Pahwa, and M. S. Yar, “Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects Prabodh,” J. Enzyme Inhib. Med. Chem., vol. 25, no. 4, pp. 577–589, 2010, https://doi.org/10.3109/14756360903373350

H.-L. Zhang, M. Tan, A.-M. Qiu, Z. Tao, and C.-H. Wang, “Antibiotics for treatment of acute exacerbation of chronic obstructive pulmonary disease: a network meta-analysis,” BMC Pulm. Med., vol. 17, no. 1, p. 196, 2017, https://doi.org/10.1186/s12890-017-0541-0

L. Aristilde, A. Melis, and G. Sposito, “Inhibition of photosynthesis by a fluoroquinolone antibiotic,” Environmental Science and Technology, vol. 44, no. 4. pp. 1444–1450, 2010, https://doi.org/10.1021/es902665n

E. M. Golet, A. C. Alder, and W. Giger, “Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley watershed, Switzerland,” Environmental Science and Technology, vol. 36, no. 17. pp. 3645–3651, 2002, https://doi.org/10.1021/es0256212

P. Bhattacharya, D. Mukherjee, S. Dey, S. Ghosh, and S. Banerjee, “Development and performance evaluation of a novel CuO/TiO ceramic 2 ultrafiltration membrane for ciprofloxacin removal,” Mater. Chem. Phys., vol. 229, pp. 106–116, 2019, https://doi.org/10.1016/j.matchemphys.2019.02.094

O. A. Alsager, M. N. Alnajrani, H. A. Abuelizz, and I. A. Aldaghmani, “Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity,” Ecotoxicol. Environ. Saf., vol. 158, pp. 114–122, 2018, https://doi.org/10.1016/j.ecoenv.2018.04.024

T. A. Gad-Allah, M. E. M. Ali, and M. I. Badawy, “Photocatalytic oxidation of ciprofloxacin under simulated sunlight,” J. Hazard. Mater., vol. 186, no. 1, pp. 751–755, 2011, https://doi.org/10.1016/j.jhazmat.2010.11.066

H. Li, D. Zhang, X. Han, and B. Xing, “Adsorption of antibiotic ciprofloxacin on carbon nanotubes: PH dependence and thermodynamics,” Chemosphere, vol. 95. pp. 150–155, 2014, https://doi.org/10.1016/j.chemosphere.2013.08.053

M. Malakootian, A. Nasiri, and H. Mahdizadeh, “Preparation of CoFe 2 O 4 /activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions,” Water Science and Technology, vol. 78, no. 10. pp. 2158–2170, 2018, https://doi.org/10.2166/wst.2018.494

A. Michael Rajesh, S. A. Bhatt, H. Brahmbhatt, P. S. Anand, and K. M. Popat, “Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network,” Asian Journal of Pharmaceutical Sciences, vol. 10, no. 4. pp. 331–340, 2015, https://doi.org/10.1016/j.ajps.2015.01.002

S. P. Sun, T. A. Hatton, and T. S. Chung, “Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin,” Environmental Science and Technology, vol. 45, no. 9. pp. 4003–4009, 2011, https://doi.org/10.1021/es200345q

X. X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang, and C. Chen, “Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: A direct hole oxidation pathway,” Chemical Engineering Journal, vol. 274. pp. 290–297, 2015, https://doi.org/10.1016/j.cej.2015.03.077

J. A. de L. Perini, M. Perez-Moya, and R. F. P. Nogueira, “Photo-Fenton Degradation Kinetics of Low Ciprofloxacin Concentration Using Different Iron Sources and pH,” J. Photochem. Photobiol. A Chem., vol. 259, pp. 53–58, 2013, https://doi.org/10.1016/j.jphotochem.2013.03.002

N. Jawad and T. M. Naife, “Mathematical Modeling and Kinetics of Removing Metal Ions from Industrial Wastewater,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 23, no. 4. pp. 59–69, 2022, https://doi.org/10.31699/ijcpe.2022.4.8

Z. N. Jamka and W. T. Mohammed, “Assessment of the Feasibility of Modified Chitosan Beads for the Adsorption of Nitrate from an Aqueous Solution,” J. Ecol. Eng., vol. 24, no. 2, pp. 265–278, 2023, https://doi.org/10.12911/22998993/156886

A. H. Sulaymon, S. E. Ebrahim, and M. J. Mohammed-Ridha, “Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater,” Environmental Science and Pollution Research, vol. 20, no. 1. pp. 175–187, 2013, https://doi.org/10.1007/s11356-012-0854-8

R. Dhankhar and A. Hooda, “Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions,” Environ. Technol., vol. 32, no. 5, pp. 467–491, Apr. 2011, https://doi.org/10.1080/09593330.2011.572922

A. R. Ibrahim and B. A. Abdulmajeed, “Biological Co-existence of the Microalgae – Bacteria System in Dairy Wastewater using photo-bioreactor,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 19, no. 3. pp. 1–9, 2018, https://doi.org/10.31699/ijcpe.2018.3.1

E. Angulo, L. Bula, I. Mercado, A. Montaño, and N. Cubillán, “Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction,” Bioresource Technology, vol. 257. pp. 17–22, 2018, https://doi.org/10.1016/j.biortech.2018.02.079

E. S. M. Al-Mashhadani and M. K. H. Al-Mashhadan, “Utilization of Chlorella vulgaris after the Extraction Process in Wastewater Treatment as a Biosorption Material for Ciprofloxacin Removal,” J. Ecol. Eng., vol. 24, no. 4, pp. 1–15, 2023, https://doi.org/10.12911/22998993/159336

K. Nithya, A. Sathish, K. Pradeep, and S. Kiran Baalaji, “Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies,” Journal of Environmental Chemical Engineering, vol. 7, no. 5. p. 103273, 2019, https://doi.org/10.1016/j.jece.2019.103273

K. V. Kumar et al., “Characterization of the adsorption site energies and heterogeneous surfaces of porous materials,” J. Mater. Chem. A, vol. 7, no. 17, pp. 10104–10137, 2019, https://doi.org/10.1039/C9TA00287A

Q. Manzoor, R. Nadeem, M. Iqbal, R. Saeed, and T. M. Ansari, “Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media,” Bioresour. Technol., vol. 132, pp. 446–452, 2013, https://doi.org/10.1016/j.biortech.2013.01.156

X. Han, W. Wang, and X. Ma, “Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf,” Chem. Eng. J., vol. 171, no. 1, pp. 1–8, 2011, https://doi.org/10.1016/j.cej.2011.02.067

G. K. Rajahmundry, C. Garlapati, P. S. Kumar, R. S. Alwi, and D.-V. N. Vo, “Statistical analysis of adsorption isotherm models and its appropriate selection,” Chemosphere, vol. 276, p. 130176, 2021, https://doi.org/10.1016/j.chemosphere.2021.130176

P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, “Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions,” Desalination, vol. 261, no. 1–2. pp. 52–60, 2010, https://doi.org/10.1016/j.desal.2010.05.032

A. T. Ojedokun and O. S. Bello, “Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon,” Applied Water Science, vol. 7, no. 4. pp. 1965–1977, 2017, https://doi.org/10.1007/s13201-015-0375-y

M. Ahmadi, E. Kouhgardi, and B. Ramavandi, “Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters,” Korean J. Chem. Eng., vol. 33, no. 9, pp. 2589–2601, 2016, https://doi.org/10.1007/s11814-016-0135-1

P. Thilagavathy and T. Santhi, “Kinetics, Isotherms and Equilibrium Study of Co(II) Adsorption from Single and Binary Aqueous Solutions by Acacia nilotica Leaf Carbon,” Chinese J. Chem. Eng., vol. 22, no. 11, pp. 1193–1198, 2014, https://doi.org/10.1016/j.cjche.2014.08.006

P. S. Kumar, S. Ramalingam, S. D. Kirupha, A. Murugesan, T. Vidhyadevi, and S. Sivanesan, “Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design,” Chemical Engineering Journal, vol. 167, no. 1. pp. 122–131, 2011, https://doi.org/10.1016/j.cej.2010.12.010

M. A. K. Moharram, K. Tohami, W. M. El Hotaby, and A. M. Bakr, “Graphene oxide porous crosslinked cellulose nanocomposite microspheres for lead removal: Kinetic study,” React. Funct. Polym., vol. 101, pp. 9–19, 2016, https://doi.org/10.1016/j.reactfunctpolym.2016.02.001

Y.-S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochem., vol. 34, no. 5, pp. 451–465, 1999, https://doi.org/10.1016/S0032-9592(98)00112-5

V. A. Anagnostopoulos, P. G. Koutsoukos, and B. D. Symeopoulos, “Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies,” Water, Air, and Soil Pollution, vol. 226, no. 4. 2015, https://doi.org/10.1007/s11270-015-2379-5

I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 154, no. 1–3. pp. 337–346, 2008, https://doi.org/10.1016/j.jhazmat.2007.10.031

M. A. Embaby, E. A. Haggag, A. S. El-Sheikh, and D. A. Marrez, “Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana,” Environ. Sci. Pollut. Res., vol. 29, no. 38, pp. 58388–58404, 2022, https://doi.org/10.1007/s11356-022-19827-2

S. Adhoni, C. Shivasharana, and B. Kaliwal, “Identification and Characterisation of Chlorella Vulgaris for Biodiesel Production,” International Journal of Scientific Research and Engineering Studies, vol. 3, no. 1. pp. 7–15, 2016.

C. Solisio, S. Al Arni, and A. Converti, “Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study,” Environmental Technology (United Kingdom), vol. 40, no. 5. pp. 664–672, 2019, https://doi.org/10.1080/09593330.2017.1400114

L. G. Benning, V. R. Phoenix, N. Yee, and M. J. Tobin, “Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy,” Geochimica et Cosmochimica Acta, vol. 68, no. 4. pp. 729–741, 2004, https://doi.org/10.1016/S0016-7037(03)00489-7

V. A. Sinyayev, gulparshyn A. Toxeitova, A. A. Batyrbayeva, L. R. Sassykova, R. N. Azhigulova, and Y. N. Sakhipov, “A comparative investigtion of the IR spectra of a carbohydrate series,” Journal of Chemical Technology and Metallurgy, vol. 55, no. 4. pp. 724–729, 2020.

L. Chen, Z. Yu, J. Liang, Y. Liao, and X. Ma, “Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS,” Energy Convers. Manag., vol. 177, pp. 582–591, 2018, https://doi.org/10.1016/j.enconman.2018.10.010

S. A. Awaluddin, S. Izhar, Y. Hiroyuki, M. K. Danquah, and R. Harun, “Sub-critical water technology for enhance extraction of bioactive compound from microalgae,” Journal of Engineering Science and Technology, vol. 11, no. Special Issue onsomche2015. pp. 63–72, 2016.

I. M. R. Fattah et al., “Lipid extraction maximization and enzymatic synthesis of biodiesel from microalgae,” Appl. Sci., vol. 10, no. 17, p. 6103, 2020, https://doi.org/10.3390/app10176103

H. A. Cid et al., “Mechanisms of Cu2+ biosorption on Lessonia nigrescens dead biomass: Functional groups interactions and morphological characterization,” Journal of Environmental Chemical Engineering, vol. 6, no. 2. pp. 2696–2704, 2018, https://doi.org/10.1016/j.jece.2018.03.034

A. G. M. Shoaib, A. El-Sikaily, A. El Nemr, A. E.-D. A. Mohamed, and A. A. Hassan, “Preparation and characterization of highly surface area activated carbons followed type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation,” Biomass Convers. Biorefinery, vol. 12, no. 6, pp. 2253–2265, 2022, https://doi.org/10.1007/s13399-020-00760-8

U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, “Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature,” Bioresource Technology, vol. 101, no. 14. pp. 5043–5053, 2010, https://doi.org/10.1016/j.biortech.2010.02.030

A. H. A. El Hameed, W. E. Eweda, K. A. A. Abou-Taleb, and H. I. Mira, “Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers,” Ann. Agric. Sci., vol. 60, no. 2, pp. 345–351, 2015, https://doi.org/10.1016/j.aoas.2015.10.003

W. Jianlong, “Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae,” Process Biochemistry, vol. 37, no. 8. pp. 847–850, 2002, https://doi.org/10.1016/S0032-9592(01)00284-9

Z. Reddad, C. Gerente, Y. Andres, and P. Le Cloirec, “Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies,” Environmental Science and Technology, vol. 36, no. 9. pp. 2067–2073, 2002, https://doi.org/10.1021/es0102989

Y. Fu, Z. Yang, Y. Xia, Y. Xing, and X. Gui, “Adsorption of ciprofloxacin pollutants in aqueous solution using modified waste grapefruit peel,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 43, no. 2. pp. 225–234, 2021, https://doi.org/10.1080/15567036.2019.1624877

K. G. Karthikeyan, “Sorption of the Antimicrobial Ciprofloxacin to Aluminum and Iron Hydrous Oxides,” Environ. Sci. Eng. Technol., vol. 39, no. 23, pp. 9166–9173, 2005, https://doi.org/10.1021/es051109f

E. S. I. El-Shafey, H. Al-Lawati, and A. S. Al-Sumri, “Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets,” Journal of Environmental Sciences (China), vol. 24, no. 9. pp. 1579–1586, 2012, https://doi.org/10.1016/S1001-0742(11)60949-2

C. J. Wang, Z. Li, W. T. Jiang, J. S. Jean, and C. C. Liu, “Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite,” Journal of Hazardous Materials, vol. 183, no. 1–3. pp. 309–314, 2010, https://doi.org/10.1016/j.jhazmat.2010.07.025

K. A. Shroff and V. K. Vaidya, “Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis,” Chemical Engineering Journal, vol. 171, no. 3. pp. 1234–1245, 2011, https://doi.org/10.1016/j.cej.2011.05.034

D. Bulgariu and L. Bulgariu, “Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies,” Clean. Prod., vol. 112, no. 5, pp. 4525–4533, 2016, https://doi.org/10.1016/j.jclepro.2015.05.124

I. Ali et al., “High-Speed and High-Capacity Removal of Methyl Orange and Malachite Green in Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies,” ACS Omega, vol. 4, no. 21. pp. 19293–19306, 2019, https://doi.org/10.1021/acsomega.9b02669

I. Guerrero-Coronilla, L. Morales-Barrera, and E. Cristiani-Urbina, “Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves,” J. Environ. Manage., vol. 152, pp. 99–108, 2015, https://doi.org/10.1016/j.jenvman.2015.01.026

M. Habibzadeh, N. Chaibakhsh, and A. S. Naeemi, “Optimized treatment of wastewater containing cytotoxic drugs by living and dead biomass of the freshwater microalga, Chlorella vulgaris,” Ecological Engineering, vol. 111. pp. 85–93, 2018, https://doi.org/10.1016/j.ecoleng.2017.12.001

N. Sharifpour, F. M. Moghaddam, G. Mardani, and M. Malakootian, “Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions,” Appl. Water Sci., vol. 10, no. 6, p. 140, 2020, https://doi.org/10.1007/s13201-020-01229-9

S. Santaeufemia, E. Torres, and R. M. and J. Abalde, “Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum.,” J. Hazard. Mater., vol. 320, pp. 315–325, 2016, https://doi.org/10.1016/j.jhazmat.2016.08.042

N. K. Alharbi, M. I. Al-Zaban, F. M. Albarakaty, S. F. Abdelwahab, S. H. A. Hassan, and M. A. Fawzy, “Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology,” life, vol. 12, no. 4. p. 585, 2022, https://doi.org/10.3390/life12040585

X. Zhang et al., “Removal of cadmium and lead from aqueous solutions using iron phosphate-modified pollen microspheres as adsorbents,” Rev. Adv. Mater. Sci., vol. 60, no. 1, pp. 365–376, 2021, https://doi.org/10.1515/rams-2021-0035

A. E. Ofomaja, “Sorptive removal of Methylene blue from aqueous solution using palm kernel fibre: Effect of fibre dose,” Biochemical Engineering Journal, vol. 40, no. 1. pp. 8–18, 2008, https://doi.org/10.1016/j.bej.2007.11.028

J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” J. ofHazardous Mater., vol. 390, p. 122156, 2020, https://doi.org/10.1016/j.jhazmat.2020.122156

M. Arami, N. Y. Limaee, and N. M. Mahmoodi, “Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent,” Chemical Engineering Journal, vol. 139, no. 1. pp. 2–10, 2008, https://doi.org/10.1016/j.cej.2007.07.060

D. Bulgariu and L. Bulgariu, “Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass,” Bioresour. Technol., vol. 103, no. 1, pp. 489–493, 2012, https://doi.org/10.1016/j.biortech.2011.10.016

M. E. M. Ali, A. M. A. El-aty, M. I. Badawy, and R. K. Ali, “Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus,” Ecotoxicol. Environ. Saf., vol. 151, no. January, pp. 144–152, 2018, https://doi.org/10.1016/j.ecoenv.2018.01.012

O. S. Agboola and O. S. Bello, “Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk,” Biomass Convers. Biorefinery, vol. 12, no. December 2022, pp. 5463–5478, 2020, https://doi.org/10.1007/s13399-020-01038-9

O. M. Ezekoye, K. G. Akpomie, S. I. Eze, C. N. Chukwujindu, and J. U. A. & O. T. Ujam, “Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption,” Int. J. Phytoremediation, vol. 22, no. 10, pp. 1549–7879, 2020, https://doi.org/10.1080/15226514.2020.1725869

V. R. A. Ferreira, C. L. Amorim, S. M. Cravo, M. E. Tiritan, P. M. L. Castro, and C. M. M. Afonso, “Fluoroquinolones biosorption onto microbial biomass: activated sludge and aerobic granular sludge,” Int. Biodeterior. Biodegradation, vol. 110, pp. 53–60, 2016, https://doi.org/10.1016/j.ibiod.2016.02.014

M. E. Peñafiel, E. Vanegas, D. Bermejo, J. M. Matesanz, and M. P. Ormad, “Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution,” Hyperfine Interact., vol. 240, no. 1, p. 71, 2019, https://doi.org/10.1007/s10751-019-1612-9

S. Karoui, R. Ben Arf, K. Mougin, A. Ghorba, A. Assadi, and A. Amrane, “Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models,” J. Hazard. Mater., vol. 387, p. 121675, 2020, https://doi.org/10.1016/j.jhazmat.2019.121675

C.-L. Zhang, G.-L. Qiao, F. Zhao, and Y. Wang, “Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution,” J. Mol. Liq., vol. 163, no. 1, pp. 53–56, 2011, https://doi.org/10.1016/j.molliq.2011.07.005

Z. Li et al., “A mechanistic study of ciprofloxacin removal by kaolinite,” Colloids and Surfaces B: Biointerfaces, vol. 88, no. 1. pp. 339–344, 2011, https://doi.org/10.1016/j.colsurfb.2011.07.011

R. Kumar, D. Bhatia, R. Singh, S. Rani, and N. R. Bishnoi, “Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column,” Int. Biodeterior. Biodegrad., vol. 65, no. 8, pp. 1133–1139, 2011, https://doi.org/10.1016/j.ibiod.2011.09.003

R. Patel and S. Suresh, “Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus,” Bioresource Technology, vol. 99, no. 1. pp. 51–58, 2008, https://doi.org/10.1016/j.biortech.2006.12.003

V. K. Gupta, A. Rastogi, and A. Nayak, “Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models,” Journal of Colloid and Interface Science, vol. 342, no. 2. pp. 533–539, 2010, https://doi.org/10.1016/j.jcis.2009.10.074

Downloads

Published

2023-12-30

How to Cite

Al-Mashhadani, E. S. M., Al-Mashhadani, M. K. H., & Al-Maari, M. A. (2023). Biosorption of Ciprofloxacin (CIP) using the Waste of Extraction Process of Microalgae: The Equilibrium Isotherm and Kinetic Study. Iraqi Journal of Chemical and Petroleum Engineering, 24(4), 1-15. https://doi.org/10.31699/IJCPE.2023.4.1