Ibuprofen Degradation from Synthetic Wastewater Using Photo-Fenton Process
DOI:
https://doi.org/10.31699/IJCPE.2023.4.11Keywords:
Ibuprofen antibiotic; Homogeneous Process; UVC; First order modelAbstract
The removal of Ibuprofen antibiotics (IBU) by photo-degradation UV/H2O2/Fe+2 system was investigated in a batch reactor under different initial concentrations of H2O2 (100-500) mg/L, Fe+2 (10-40) mg/L, pH (3-9) and initial concentrations of IBU (10-80) mg/L, and their relationship with the degradation efficiency were studied. The result demonstrated that the maximum elimination of IBU was 85.54% achieved at 300 mg/L of H2O2, 30 mg/L of Fe+2, pH=3, and irradiation time of 150 min, for 10 mg/L of IBU. The results have shown that the oxidation reagent H2O2 plays a very important role in IBU degradation.
Received on 01/03/2023
Received in Revised Form on 09/04/2023
Accepted on 10/04/2023
Published on 30/12/2023
References
L. Wimmerova, O. Solcova, M. Spacilova, N. Cehajic, S. Krejcikova, P. Marsik, “Toxicity assessment and treatment options of Diclofenac and Triclosan dissolved in water,” Toxics, Vol. 10, 2022, pp 422. http://doi.org/10.3390/toxics10080422
R. S. Mahmood , A. A. Alsarayreh , and A. S. Abbas, “Measurement and Analysis of Bubble Size Distribution in the Electrochemical Stirred Tank Reactor ,” Iraqi Journal of Chemical and Petroleum Engineering, 24(1), 27-31, 2023. https://doi.org/10.31699/IJCPE.2023.1.4
B. A. A. Majeed, and M. A. Zubaidy, “Performance study of electrodialysis for treatment fuel washing wastewater,” Iraqi Journal of Chemical and Petroleum Engineering, 17 (4), 35-42, 2016. https://doi.org/10.31699/IJCPE.2016.4.4
A. I. Alwared, and F. A. Sulaiman, H. Raad, T.J. Al-Musawi, and N. A. Mohammed, “Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes,” South African Journal of Botany, Vol.153, 2023, pp195-202. https://doi.org/10.1016/j.sajb.2022.12.031
James B. Hudson,” Applications of the Phytomedicine Echinacea purpurea (Purple Coneflower) in Infectious Diseases”, Journal of Biomedicine and Biotechnology. 2012. http://doi.org/10.1155/2012/769896
H. A. Abdulrazaq, and A. I. Alwared, “, Bio-synthesis of TiO2 using Grape leaves extract and its application for photocatalytic degradation of ibuprofen from aqueous solution”, Environmental Technology, 2023, https://doi.org/10.1080/09593330.2023.2176791
A. Mohamed, A. Salama, W. S. Nasser, and A. Uheida, “Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN‑MWCNT/TiO2–NH2 nanofiber membrane under UV light irradiation”, Environmental Science Europe, Vol. 30, 2018, pp.47. https://doi.org/10.1186/s12302-018-0177-6
A. A. Okab and A. I. Alwared, “Photodegradation of tetracycline antibiotic by ternary recyclable Z-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 photocatalyst with improved charge separation efficiency: Characterization and mechanism studies”, Environmental Nanotechnology, Monitoring & Management, Vol 19, 2023, 100767. https://doi.org/10.1016/j.enmm.2022.100767
Noor A Mohammed., Abeer I. Alwared, and Mohammed S. Salman. "Photocatalytic degradation of reactive yellow Dye in wastewater using H2O2/TiO2/UV technique." Iraqi Journal of Chemical and Petroleum Engineering, 21.1, 2020: 15-21. https://doi.org/10.31699/IJCPE.2020.1.3
P. Kehrein, M. van Loosdrecht, P. Osseweijer, J. Dewulf, M. Garfi, and J. A. P. Duque,” A critical review of resource recovery from municipal wastewater treatment plants–market supply potentials, technologies and bottlenecks”, Environmental Science: Water Research & Technology, 2020. https://doi.org/10.1039/C9EW00905A
D. Krzemińska, E. Neczaj, and G. Borowski, “Advanced oxidation processes for food industrial wastewater decontamination”, Journal of Ecological Engineering, Vol.6, No.2, 2015. https://doi.org/10.12911/22998993/1858
M. G. Alalm, A. Tawfik, and A. Okawara,” Degradation of four pharmaceuticals by solar photo-Fenton process: Kinetics and costs estimation”, Journal of Environmental Chemical Engineering, Vol.3, No.1, 2015, pp46-51. https://doi.org/10.1016/j.jece.2014.12.009
A. Buthiyappan, A. R. A. Aziz, and W. M. A. W. Daud, “Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents”, Reviews in Chemical Engineering, Vol. 32, No.1,2016, pp 1-47. https://doi.org/10.1515/revce-2015-0034
M. A. Tony, P. J. Purcell, Y. Q. Zhao, A. M. Tayeb, and M. F. El-Sherbiny,” Photo-catalytic degradation of an oil-water emulsion using the photo-Fenton treatment process: Effects and statistical optimization”, Journal of Environmental Science and Health Part A, Vol.44, No.2, 2009, pp 179-187. https://doi.org/10.1080/10934520802539830
J. Tejera, R. Miranda, D. Hermosilla, I. Urra, C. Negro, and A. Blanco,” Treatment of a mature landfill leachate: comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments”, In Water, Vol.11, 2019, pp 1849. https://doi.org/10.3390/w11091849
E. Mousset, W. H. Loh, W. S. Lim, L. Jarry, Z. Wang, and O. Lefebvre, “Cost Comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria”, Water Res., Vol.200, 2021, pp 117234. https://doi.org/10.1016/j.watres.2021.117234
A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi,” Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes-a review”, Chemosphere, Vol.174, 2017, pp 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019
B. Jain, A. K. Singh, H. Kim, E. Lichtfouse, V. K. Sharma, “Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes” Environ. Chem. Lett., vol. 16, 2018, pp 947–967. https://doi.org/10.1007/s10311-018-0738-3
R. Su, X. Dai, H. Wang, Z. Wang, Z. Li, Y. Chen, Y. Luo, and D. Ouyang, “Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: kinetics, mechanisms, and effects of natural water Matrices”, International Journal Environmental Research. Public Health, Vol.19, 2022, pp 12354. https://doi.org/10.3390/ijerph191912354
P. Salgado, V. Melin, D. Contreras, Y. Moreno, H. D. Mansilla, “Fenton reaction driven by iron ligands”, Journal of the Chilean Chemical Society, Vol. 58,2013, pp 2096–2101. https://doi.org/10.4067/S0717-97072013000400043
J. F. Yang, S.B. Zhou, A. G. Xiao, W. J. Li, G. G. Ying, “Chemical oxidation of sulfadiazine by the Fenton process: kinetics, pathways, toxicity evaluation”, Journal of Environmental Science and Health, Part B, Vol.49, 2014, pp 909–916. https://doi.org/10.1080/03601234.2014.951572
X. Liu,” Progress in the mechanism and kinetics of Fenton reaction”, MOJ ecology & environmental sciences, Vol. 3, 2018, pp60. https://doi.org/10.15406/mojes.2018.03.00060
E. Adamek, E. Masternak, D. Sapińska, W. Baran, “Degradation of the selected antibiotic in an aqueous solution by the Fenton process: kinetics, products, and ecotoxicity”, International Journal of Molecular Sciences, Vol.23, 2022, pp 15676. https://doi.org/10.3390/ijms232415676
M. Abualhasan, M. Assali, N. Jaradat, R. Tarayra, A. Hamdan, R. Arfah, and A. N. Zaid, “Synthesis and formulation of Ibuprofen Pro- drag for enhanced transdermal absorption”, International Journal of Pharmacy and Pharmaceutical Sciences, Vol.7, No.2, 2015, pp352-354.
B. Kordestani, A. Takdastan, Y. R. Jalilzadeh, and A.K. Neisi, “Photo-Fenton oxidative of pharmaceutical wastewater containing meropenem and ceftriaxone antibiotics: influential factors, feasibility, and biodegradability studies”, Toxin Reviews, 2018, pp1-11. https://doi.org/10.1080/15569543.2018.1520261
M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, and Y. Ait-Ichou, ”Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system”, Separation and Purification Technology, Vol. 61, No.1, 2008, pp103-108. https://doi.org/10.1016/j.seppur.2007.09.017
M. Verma, and A. K. Haritash, “Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes”. Journal of Environmental Chemical Engineering, Vol.7 No.1, 2019, pp102886. https://doi.org/10.1016/j.jece.2019.102886
Y. P. Zhang, C. G. Jia, R. Peng, F. Ma, and G. N. Ou, “Heterogeneous photo-assisted Fenton catalytic removal of tetracycline using Fe-Ce pillared bentonite” Journal of central south university, Vol.21, No.1, 2014, pp310-316. https://doi.org/10.1007/s11771-014-1942-3
A. L. Estrada, Y. Y. Li, and Wang, A. Biodegradability enhancement of wastewater containing Cefalexin by means of the electro-Fenton oxidation process. Journal of hazardous materials, 227, 41-48, 2012. https://doi.org/10.1016/j.jhazmat.2012.04.079
E. E. Ebrahiem, M. N. Al-Maghrabi, and A. R. Mobarki,” Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology”, Arabian Journal of Chemistry, Vol.10, 2017, pp S1674-S1679. https://doi.org/10.1016/j.arabjc.2013.06.012
S. Safa, and M. R. Mehrasbi, “Investigating the photo-Fenton process for treating soil washing wastewater”, Journal of Environmental Health Science and Engineering, 2019, pp1-9. https://doi.org/10.1007/s40201-019-00394-7
O. B. Ayodele, J. K. Lim, B. H. Hameed,” Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin”, Applied catalysis a: general, Vol.413, 2012, pp 301-309. https://doi.org/10.1016/j.apcata.2011.11.023
L. G. Devi, S. G. Kumar, and K. M. Reddy, “Photo Fenton-like process Fe3+/(NH4)2S2O8/UV for the degradation of Di azo dye Congo red using low iron concentration”, Central European Journal of Chemistry, Vol.7, No.3, 2009, pp 468-477. https://doi.org/10.2478/s11532-009-0036-9
N. Ahmadpour, M. H. Sayadi, S. Sobhani, M. Hajiani, “Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation”, Journal of Environmental Management, Vol. 271, 2020, pp 110964. https://doi.org/10.1016/j.jenvman.2020.110964
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Iraqi Journal of Chemical and Petroleum Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.