Kinetics and Energetic Parameters Study of Phenol Removal from Aqueous Solution by Electro-Fenton Advanced Oxidation Using Modified Electrodes with PbO2 and Graphene


  • Rowaida N. Abbas Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Ammar S. Abbas Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq



Wastewater, Phenolic pollutants, Electro-Fenton oxidation, Graphite, Carbon fiber


The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.


S. J. Varjani, E. Gnansounou, and A. Pandey, “Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms,” Chemosphere, vol. 188, pp. 280–291, 2017, doi: 10.1016/j.chemosphere.2017.09.005.

S. J. Varjani and V. N. Upasani, “A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants,” Int. Biodeterior. Biodegrad., vol. 120, pp. 71–83, 2017, doi: 10.1016/j.ibiod.2017.02.006.

X. Y. Li, Y. H. Cui, Y. J. Feng, Z. M. Xie, and J. D. Gu, “Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes,” Water Res., vol. 39, no. 10, pp. 1972–1981, 2005, doi: 10.1016/j.watres.2005.02.021.

S. Randazzo, O. Scialdone, E. Brillas, and I. Sirés, “Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products,” J. Hazard. Mater., vol. 192, no. 3, pp. 1555–1564, 2011, doi: 10.1016/j.jhazmat.2011.06.075.

A. S. Abbas, M. H. Hafiz, and R. H. Salman, “Indirect Electrochemical Oxidation of Phenol Using Rotating Cylinder Reactor,” Iraqi J. Chem. Pet. Eng., vol. 17, no. 4, pp. 43–55, 2016.

A. Medel, E. Bustos, K. Esquivel, L. A. Godínez, and Y. Meas, “Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes,” Int. J. Photoenergy, vol. 2012, 2012, doi: 10.1155/2012/681875.

N. V. Pradeep et al., “Treatment of Sugar Industry Wastewater in Anaerobic Downflow Stationary Fixed Film (DSFF) Reactor,” Sugar Tech, vol. 16, no. 1, pp. 9–14, 2014, doi: 10.1007/s12355-013-0227-8.

P. Praveen and K. C. Loh, “Simultaneous extraction and biodegradation of phenol in a hollow fiber supported liquid membrane bioreactor,” J. Memb. Sci., vol. 430, pp. 242–251, 2013, doi: 10.1016/j.memsci.2012.12.021.

F. Karim and A. N. M. Fakhruddin, “Recent advances in the development of biosensor for phenol: A review,” Rev. Environ. Sci. Biotechnol., vol. 11, no. 3, pp. 261–274, 2012, doi: 10.1007/s11157-012-9268-9.

H. B. Senturk, D. Ozdes, A. Gundogdu, C. Duran, and M. Soylak, “Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study,” J. Hazard. Mater., vol. 172, no. 1, pp. 353–362, 2009, doi: 10.1016/j.jhazmat.2009.07.019.

H. Jiang, Y. Fang, Y. Fu, and Q. X. Guo, “Studies on the extraction of phenol in wastewater,” J. Hazard. Mater., vol. 101, no. 2, pp. 179–190, 2003, doi: 10.1016/S0304-3894(03)00176-6.

A. Olusegun et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. i, no. tourism, p. 38, 2012, doi: 10.1016/j.colsurfa.2011.12.014.

F. Renault, B. Sancey, P. M. Badot, and G. Crini, “Chitosan for coagulation/flocculation processes - An eco-friendly approach,” Eur. Polym. J., vol. 45, no. 5, pp. 1337–1348, 2009, doi: 10.1016/j.eurpolymj.2008.12.027.

A. Chavan and S. Mukherji, “Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio,” J. Hazard. Mater., vol. 154, no. 1–3, pp. 63–72, 2008, doi: 10.1016/j.jhazmat.2007.09.106.

M. H. El-Naas, S. Al-Zuhair, and M. A. Alhaija, “Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon,” Chem. Eng. J., vol. 162, no. 3, pp. 997–1005, 2010, doi: 10.1016/j.cej.2010.07.007.

W. Raza, J. Lee, N. Raza, Y. Luo, K. H. Kim, and J. Yang, “Removal of phenolic compounds from industrial waste water based on membrane-based technologies,” J. Ind. Eng. Chem., vol. 71, pp. 1–18, 2019, doi: 10.1016/j.jiec.2018.11.024.

Y. Sun, Y. Zhang, and X. Quan, “Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure,” Sep. Purif. Technol., vol. 62, no. 3, pp. 565–570, 2008, doi: 10.1016/j.seppur.2008.02.027.

Y. Hou, J. Qu, X. Zhao, P. Lei, D. Wan, and C. P. Huang, “Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode,” Sci. Total Environ., vol. 407, no. 7, pp. 2431–2439, 2009, doi: 10.1016/j.scitotenv.2008.12.055.

Y. Yavuz, A. S. Koparal, and Ü. B. Ögütveren, “Phenol removal through chemical oxidation using Fenton reagent,” Chem. Eng. Technol., vol. 30, no. 5, pp. 583–586, 2007, doi: 10.1002/ceat.200600377.

X. Duan, F. Ma, Z. Yuan, X. Jin, and L. Chang, “Electrochemical degradation of phenol in aqueous solution using PbO2 anode,” J. Taiwan Inst. Chem. Eng., vol. 44, no. 1, pp. 95–102, 2013, doi: 10.1016/j.jtice.2012.08.009.

R. G. Saratale, K. J. Hwang, J. Y. Song, G. D. Saratale, and D. S. Kim, “Electrochemical oxidation of phenol for wastewater treatment using Ti/PbO2 electrode,” J. Environ. Eng. (United States), vol. 142, no. 2, pp. 1–9, 2016, doi: 10.1061/(ASCE)EE.1943-7870.0001007.

A. Ali, M. Hewehy, X. Chen, G. Huang, and J. Wang, “Electrochemical Reduction / Oxidation in the Treatment of Heavy Metal Wastewater" "Electrochemical reduction/oxidation in the treatment of heavy metal wastewater." Journal of Metallurgical Engineering (ME) Volume 2, no. 4 (2013).

Z. Tasic, V. K. Gupta, and M. M. Antonijevic, “The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation,” Int. J. Electrochem. Sci., vol. 9, no. 7, pp. 3473–3490, 2014.

S. Ben Abdelmelek, J. Greaves, K. P. Ishida, W. J. Cooper, and W. Song, “Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes,” Environ. Sci. Technol., vol. 45, no. 8, pp. 3665–3671, 2011, doi: 10.1021/es104287n.

E. Brillas, I. Sire, and M. A. Oturan, “Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton ’ s Reaction Chemistry,” pp. 6570–6631, 2009.

J. Krýsa, D. Mantzavinos, P. Pichat, and I. Poulios, “Advanced oxidation processes for water/wastewater treatment,” Environ. Sci. Pollut. Res., vol. 25, no. 35, pp. 34799–34800, 2018, doi: 10.1007/s11356-018-3411-2.

P. Jin, R. Chang, D. Liu, K. Zhao, L. Zhang, and Y. Ouyang, “Phenol degradation in an electrochemical system with TiO 2/activated carbon fiber as electrode,” J. Environ. Chem. Eng., vol. 2, no. 2, pp. 1040–1047, 2014, doi: 10.1016/j.jece.2014.03.023.

S. Parsons, “Advanced Oxidation Processes for Water and Wastewater Treatment,” IWA Publ., 2004.

E. Rosales, M. Pazos, M. A. Longo, and M. A. Sanromán, “Electro-Fenton decoloration of dyes in a continuous reactor : A promising technology in colored wastewater treatment,” vol. 155, pp. 62–67, 2009, doi: 10.1016/j.cej.2009.06.028.

M. Zhou, Q. Yu, L. Lei, and G. Barton, “Electro-Fenton method for the removal of methyl red in an efficient electrochemical system,” Sep. Purif. Technol., vol. 57, pp. 380–387, 2007, doi: 10.1016/j.seppur.2007.04.021.

R. A. Torres, W. Torres, P. Peringer, and C. Pulgarin, “Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment,” Chemosphere, vol. 50, no. 1, pp. 97–104, 2003, doi: 10.1016/S0045-6535(02)00487-3.

A. Urtiaga, I. Ortiz, Á. Anglada, A. Urtiaga, and I. Ortiz, “Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications,” J. Chem. Technol. Biotechnol., vol. 84, no. 12, pp. 1747–1755, 2009, doi: 10.1002/jctb.2214.

R. M. Farinos, R. L. Zornitta, and L. A. M. M. Ruotolo, “Development of three-dimensional electrodes of PbO2 electrodeposited on reticulated vitreous carbon for organic eletrooxidation,” J. Braz. Chem. Soc., vol. 28, no. 1, pp. 187–196, 2017, doi: 10.5935/0103-5053.20160162.

M. Pimentel, N. Oturan, M. Dezotti, and M. A. Oturan, “Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode,” Appl. Catal. B Environ. 83, vol. 83, pp. 140–149, 2008.

A. Özcan, Y. Şahin, A. S. Koparal, and M. A. Oturan, “Degradation of picloram by the electro-Fenton process,” J. Hazard. Mater., vol. 153, no. 1–2, pp. 718–727, 2008, doi: 10.1016/j.jhazmat.2007.09.015.

J. Liu, X. Sun, P. Song, Y. Zhang, W. Xing, and W. Xu, “High-Performance Oxygen Reduction Electrocatalysts based on Cheap Carbon Black, Nitrogen, and Trace Iron,” Adv. Mater., vol. 25, no. 47, pp. 6879–6883, 2013, doi: 10.1002/adma.201302786.

A. Thiam, M. Zhou, E. Brillas, and I. Sirés, “Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes,” Appl. Catal. B Environ., vol. 150–151, pp. 116–125, 2014, doi: 10.1016/j.apcatb.2013.12.011.

T. Liu, K. Wang, S. Song, A. Brouzgou, P. Tsiakaras, and Y. Wang, “New Electro-Fenton Gas Diffusion Cathode based on Nitrogen-doped Graphene@Carbon Nanotube Composite Materials,” Electrochim. Acta, vol. 194, pp. 228–238, 2016, doi: 10.1016/j.electacta.2015.12.185.

N. Beqqal, M. S. Yahya, M. El Karbane, A. Guessous, and K. El Kacemi, “Kinetic study of the degradation/mineralization of aqueous solutions contaminated with Rosuvastatin drug by Electro-Fenton: Influence of experimental parameters,” J. Mater. Environ. Sci., vol. 8, no. 12, pp. 4399–4407, 2017, doi: 10.26872/jmes.2017.8.12.464.

Gökkuş, N. Yıldız, A. S. Koparal, and Y. Yıldız, “Evaluation of the effect of oxygen on electro-Fenton treatment performance for real textile wastewater using the Taguchi approach,” Int. J. Environ. Sci. Technol., vol. 15, no. 2, pp. 449–460, 2018, doi: 10.1007/s13762-017-1404-1.

Z. I. Abbas and A. S. Abbas, “Optimization of the electro-fenton process for cod reduction from refinery wastewater,” Environ. Eng. Manag. J., vol. 19, no. 11, pp. 2029–2037, 2021, doi: 10.30638/eemj.2020.192.

Y. Yavuz, A. S. Koparal, and Ü. B. Öǧütveren, “Treatment of petroleum refinery wastewater by electrochemical methods,” Desalination, vol. 258, no. 1–3, pp. 201–205, 2010, doi: 10.1016/j.desal.2010.03.013.

S. Li, D. Bejan, M. S. McDowell, and N. J. Bunce, “Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode,” J. Appl. Electrochem., vol. 38, no. 2, pp. 151–159, 2008, doi: 10.1007/s10800-007-9413-2.

J. R. Bolton, K. G. Bircher, W. Tumas, and C. A. Tolman, “Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems,” Pure Appl. Chem., vol. 73, no. 4, pp. 627–637, 2001, doi: 10.1351/pac200173040627.

Z. I. Abbas and A. S. Abbas, “Oxidative degradation of phenolic wastewater by electro-fenton process using MnO2-graphite electrode,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103108, 2019, doi: 10.1016/j.jece.2019.103108.

D. S. Ibrahim, “Electrochemical Oxidation Treatment of Petroleum Refinery Effluent,” Int. J. Sci. &Engineering Res., vol. 4, no. 8, pp. 0–5, 2013, doi: 10.14299/00000.

B. Boye, M. M. Dieng, and E. Brillas, “Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid,” J. Electroanal. Chem., vol. 557, pp. 135–146, 2003, doi: 10.1016/S0022-0728(03)00366-8.

C. A. Martínez-Huitle, S. Ferro, and A. De Battisti, “Electrochemical incineration in the presence of halides,” Electrochem. Solid-State Lett., vol. 8, no. 11, pp. 35–39, 2005, doi: 10.1149/1.2042628.




How to Cite

Abbas, R. N., & Abbas, A. S. (2022). Kinetics and Energetic Parameters Study of Phenol Removal from Aqueous Solution by Electro-Fenton Advanced Oxidation Using Modified Electrodes with PbO2 and Graphene. Iraqi Journal of Chemical and Petroleum Engineering, 23(2), 1–8.

Most read articles by the same author(s)

1 2 > >>